On the eigenvalues of the first boundary value problem in unbounded domains
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 235-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the investigation of the spectrum of a polyharmonic operator in unbounded domains. The class of domains for which the spectrum of the corresponding first boundary value problem is discrete is examined. The classical asymptotic formula for eigenvalues is extended to the case of domains of finite volume. A two-sided bound for the distribution function of the eigenvalues is obtained in the general case. If the domain behaves sufficiently regularly at infinity, then the upper and lower bounds coincide in order. The results are new also for the Laplace operator. Bibliography: 13 titles.
@article{SM_1972_18_2_a5,
     author = {G. V. Rozenblum},
     title = {On~the eigenvalues of the first boundary value problem in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {235--248},
     year = {1972},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a5/}
}
TY  - JOUR
AU  - G. V. Rozenblum
TI  - On the eigenvalues of the first boundary value problem in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 235
EP  - 248
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a5/
LA  - en
ID  - SM_1972_18_2_a5
ER  - 
%0 Journal Article
%A G. V. Rozenblum
%T On the eigenvalues of the first boundary value problem in unbounded domains
%J Sbornik. Mathematics
%D 1972
%P 235-248
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a5/
%G en
%F SM_1972_18_2_a5
G. V. Rozenblum. On the eigenvalues of the first boundary value problem in unbounded domains. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 235-248. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a5/

[1] M. Sh. Birman, M. Z. Solomyak, “O glavnom chlene spektralnoi asimptotiki negladkikh ellipticheskikh zadach”, Funkts. analiz, 4:4 (1970), 1–13 | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Ob asimptotike spektra negladkikh ellipticheskikh uravnenii”, Funkts. analiz, 5:1 (1971), 69–70 | MR | Zbl

[3] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, Moskva, 1964 | MR

[4] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, Moskva, 1965 | MR

[5] V. G. Mazya, “Poligarmonicheskaya emkost v teorii pervoi kraevoi zadachi”, Sib. matem. zh., 6:1 (1965), 127–148 | Zbl

[6] A. M. Molchanov, “Ob usloviyakh diskretnosti spektra samosopryazhennykh differentsialnykh uravnenii vtorogo poryadka”, Trudy Mosk. matem. ob-va, II (1953), 169–200

[7] Г. В.Розенблюм “O raspredelenii sobstvennykh chisel pervoi kraevoi zadachi v neogranichennykh oblastyakh”, DAN SSSR, 202:5 (1971), 1034–1036

[8] C. Clark, “The asymptotic distribution of eigenvalues”, SIAM Rev., 9 (1967), 627–646 | DOI | MR | Zbl

[9] C. Clark, “The asymptotic formula for eigenvalues”, Bull. Amer. Math. Soc., 72 (1966), 709–713 | DOI | MR

[10] C. Clark, “On the eigenvalues of Laplacian in unbounded domains”, Arch. Rat. Mech. Anal., 31 (1968), 352–356 | DOI | MR | Zbl

[11] C. Clark, D. Hewgill, “One can hear whether a drum has finite area”, Proc. Amer. Math. Soc., 18 (1967), 236–237 | DOI | MR | Zbl

[12] D. Hewgill, “On the eigenvalues of Laplacian”, Arch. Rat. Mech. Anal., 27 (1967), 153–170 | DOI | MR

[13] H. Weyl, “Uas asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl