Invariant subrings of the induced ring on the $4\times4$ symplectic group
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if $\Omega$ is an invariant subring of the induced ring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$ with ring of values $A$ and maximal induced subring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$, then $$ 0\to\Omega/\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(I)\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/I) \quad\text{and}\quad 0\to A/I\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/\mathscr F), $$ and the ideals $~I$ and $\mathscr F$ of $A$ are described. Bibliography: 2 titles.
@article{SM_1972_18_2_a4,
author = {B. Kh. Kirshtein},
title = {Invariant subrings of the induced ring on the $4\times4$ symplectic group},
journal = {Sbornik. Mathematics},
pages = {228--234},
year = {1972},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/}
}
B. Kh. Kirshtein. Invariant subrings of the induced ring on the $4\times4$ symplectic group. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/
[1] I. I. Pyatetskii–Shapiro, “Indutsirovannye koltsa i reduktsiya polei abelevykh modulyarnykh funktsii”, Izv. AN SSSR, seriya matem., 34 (1970), 532–546
[2] B. X. Kirshtein, I. I. Pyatetskii–Shapiro, “Invariantnye podkoltsa indutsirovannykh kolets”, Izv. AN SSSR, seriya matem., 34 (1970), 83–89