Invariant subrings of the induced ring on the $4\times4$ symplectic group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that if $\Omega$ is an invariant subring of the induced ring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$ with ring of values $A$ and maximal induced subring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$, then
$$
0\to\Omega/\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(I)\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/I) \quad\text{and}\quad 0\to A/I\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/\mathscr F),
$$
and the ideals $~I$ and $\mathscr F$ of $A$ are described.
Bibliography: 2 titles.
			
            
            
            
          
        
      @article{SM_1972_18_2_a4,
     author = {B. Kh. Kirshtein},
     title = {Invariant subrings of the induced ring on the $4\times4$ symplectic group},
     journal = {Sbornik. Mathematics},
     pages = {228--234},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/}
}
                      
                      
                    B. Kh. Kirshtein. Invariant subrings of the induced ring on the $4\times4$ symplectic group. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/
