Invariant subrings of the induced ring on the $4\times4$ symplectic group
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\Omega$ is an invariant subring of the induced ring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$ with ring of values $A$ and maximal induced subring $\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(K)$, then $$ 0\to\Omega/\operatorname{Ind}_{\mathrm{Sp}_4}^{\varphi,P}(I)\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/I) \quad\text{and}\quad 0\to A/I\to\operatorname{Ind}_{GL_2}^{\varphi,B}(A/\mathscr F), $$ and the ideals $~I$ and $\mathscr F$ of $A$ are described. Bibliography: 2 titles.
@article{SM_1972_18_2_a4,
     author = {B. Kh. Kirshtein},
     title = {Invariant subrings of the induced ring on the $4\times4$ symplectic group},
     journal = {Sbornik. Mathematics},
     pages = {228--234},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/}
}
TY  - JOUR
AU  - B. Kh. Kirshtein
TI  - Invariant subrings of the induced ring on the $4\times4$ symplectic group
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 228
EP  - 234
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/
LA  - en
ID  - SM_1972_18_2_a4
ER  - 
%0 Journal Article
%A B. Kh. Kirshtein
%T Invariant subrings of the induced ring on the $4\times4$ symplectic group
%J Sbornik. Mathematics
%D 1972
%P 228-234
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/
%G en
%F SM_1972_18_2_a4
B. Kh. Kirshtein. Invariant subrings of the induced ring on the $4\times4$ symplectic group. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 228-234. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a4/