On a representation of the kernels of resolvents of Volterra operators and its applications
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 209-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using an integral representation for the kernel $M(x,t,\lambda)$ of the operator $(E-\nobreak\lambda^n M)^{-1}M$, where $E$ is the identity operator, and $Mf(x)=\int_0^xM(x,t)f(t)\,dt$, formulas are obtained for transformation operators of the solutions of integro-differential equations which generalize results of Ju. N. Valitskii (RZhMat., 1966, 4Б285); results of L. A. Sahnovich (RZhMat., 1960, 5409) on the linear equivalence of Volterra operators are generalized; and the question of the expansion in eigenfunctions of one-dimensional perturbations of Volterra operators is studied. Bibliography: 11 titles.
@article{SM_1972_18_2_a3,
     author = {A. P. Khromov},
     title = {On a~representation of the kernels of resolvents of {Volterra} operators and its applications},
     journal = {Sbornik. Mathematics},
     pages = {209--227},
     year = {1972},
     volume = {18},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a3/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - On a representation of the kernels of resolvents of Volterra operators and its applications
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 209
EP  - 227
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a3/
LA  - en
ID  - SM_1972_18_2_a3
ER  - 
%0 Journal Article
%A A. P. Khromov
%T On a representation of the kernels of resolvents of Volterra operators and its applications
%J Sbornik. Mathematics
%D 1972
%P 209-227
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a3/
%G en
%F SM_1972_18_2_a3
A. P. Khromov. On a representation of the kernels of resolvents of Volterra operators and its applications. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 209-227. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a3/

[1] A. Ya. Povzner, “O differentsialnykh uravneniyakh tipa Shturma–Liuvillya na poluosi”, Matem. sb., 23(65) (1948), 3–52 | MR

[2] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR, seriya matem., 15 (1951), 309–360 | MR | Zbl

[3] V. A. Marchenko, “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka”, Trudy Mosk. matem. ob-va, I, 1952, 327–420 ; II, 1953, 3–83

[4] M. K. Fage, “Integralnye predstavleniya operatorno-analiticheskikh funktsii odnoi nezavisimoi peremennoi”, Trudy Mosk. matem. ob-va, VIII, 1959, 3–48 | MR

[5] L. A. Sakhnovich, “Obratnaya zadacha dlya differentsialnykh operatorov poryadka $n>2$ s analiticheskimi koeffitsientami”, Matem. sb., 46(88) (1958), 61–76

[6] A. F. Leontev, “Otsenka rosta resheniya odnogo differentsialnogo uravneniya pri bolshikh po modulyu znacheniyakh parametra i ee primeneniya k nekotorym voprosam teorii funktsii”, Sib. matem. zh., I:3 (1960), 456–487 | MR

[7] V. I. Matsaev, “O suschestvovanii operatora preobrazovaniya dlya differentsialnykh uravnenii vysshikh poryadkov”, DAN SSSR, 130:3 (1960), 499–502 | Zbl

[8] Yu. N. Valitskii, “Ob operatore preobrazovaniya dlya integro-differentsialnykh operatorov tipa Volterra”, Matem. fizika, Kiev, 1965, 23–36

[9] L. A. Sakhnovich, “Spektralnyi analiz operatorov vida $kf=\int_0^xf(x)k(x-t)\,dt$”, Izv. AN SSSR, seriya matem., 22 (1958), 299–308

[10] A. P. Khromov, “Razlozhenie po sobstvennym funktsiyam obyknovennykh lineinykh differentsialnykh operatorov s neregulyarnymi raspadayuschimisya kraevymi usloviyami”, Matem. sb., 70(112) (1966), 310–329

[11] M. A. Naimark, Lineinye differentsialnye operatory, Fizmatgiz, Moskva, 1969 | MR