The homology of a symmetric relation
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 342-350
Cet article a éte moissonné depuis la source Math-Net.Ru
A homology theory is presented for the category of sets with a given reflexive and symmetric relation. There is defined in this category the notion of homotopy equivalence; the theory satisfies the analogs of the Eilenberg–Steenrod axioms and yields a theorem on almost fixed points. Bibliography: 7 titles.
@article{SM_1972_18_2_a12,
author = {A. B. Sosinskii},
title = {The homology of a~symmetric relation},
journal = {Sbornik. Mathematics},
pages = {342--350},
year = {1972},
volume = {18},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a12/}
}
A. B. Sosinskii. The homology of a symmetric relation. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 342-350. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a12/
[1] E. C. Zeeman, “The Topology of the Brain and Visual Perception”, The Topology of $3$-manifolds, Englewood, New York, Prentice Hall, 1962, 240–248 | MR
[2] E. C. Zeeman, Topology of the brain, Math, and computer science in biology and medecine, Medical research council, 1965. | Zbl
[3] C. H. Dowker, “Homology of a relation”, Ann. Math., 56 (1952), 84–95 | DOI | MR | Zbl
[4] E. Spener, Algebraicheskaya topologiya, Mir, Moskva, 1971 | MR | Zbl
[5] P. Dzh. Khilton, S. Uaili, Teoriya gomologii, Mir, Moskva, 1966
[6] S. Maklein, Gomologiya, Mir, Moskva, 1966
[7] N. Stinrod, S. Eilenberg, Osnovaniya algebraicheskoi topologii, Gostekhizdat, Moskva, 1958