Knotting of contractible two-dimensional polyhedra in~$\mathbf R^4$
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 333-341

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the Zeeman conjecture that any piecewise linear embedding of the dunce's hat (i.e. the triangle $ABC$ with the oriented edges $AB$, $BC$, and $AC$ identified) in $\mathbf R^4$ has simply connected complement is disproven. Indeed, the author constructs linear embeddings in $\mathbf R^4$ with non-simply-connected complements for a class of two-dimensional polyhedra. All of these, just as the dunce's hat, are contractible but not combinatorially contractible, and the author ventures to conjecture that any two-dimensional polyhedra with these properties admits a piecewise linear embedding in $\mathbf R^4$ with non-simply-connected complement. Figures: 4. Bibliography: 7 titles.
@article{SM_1972_18_2_a11,
     author = {S. A. Popov},
     title = {Knotting of contractible two-dimensional polyhedra in~$\mathbf R^4$},
     journal = {Sbornik. Mathematics},
     pages = {333--341},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a11/}
}
TY  - JOUR
AU  - S. A. Popov
TI  - Knotting of contractible two-dimensional polyhedra in~$\mathbf R^4$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 333
EP  - 341
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a11/
LA  - en
ID  - SM_1972_18_2_a11
ER  - 
%0 Journal Article
%A S. A. Popov
%T Knotting of contractible two-dimensional polyhedra in~$\mathbf R^4$
%J Sbornik. Mathematics
%D 1972
%P 333-341
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a11/
%G en
%F SM_1972_18_2_a11
S. A. Popov. Knotting of contractible two-dimensional polyhedra in~$\mathbf R^4$. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 333-341. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a11/