Height on families of Abelian varieties
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 169-179

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an Abelian variety imbedded in projective space, and let $L$ be an induced invertible sheaf on $X$. In this paper explicit bounds are determined for the difference $\widehat h_L-h_L$, where $\widehat h_L$ is the Neron–Tate height and $h_L$ is the Weil height. Bibliography: 5 titles.
@article{SM_1972_18_2_a0,
     author = {Yu. G. Zarhin and Yu. I. Manin},
     title = {Height on families of {Abelian} varieties},
     journal = {Sbornik. Mathematics},
     pages = {169--179},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
AU  - Yu. I. Manin
TI  - Height on families of Abelian varieties
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 169
EP  - 179
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/
LA  - en
ID  - SM_1972_18_2_a0
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%A Yu. I. Manin
%T Height on families of Abelian varieties
%J Sbornik. Mathematics
%D 1972
%P 169-179
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/
%G en
%F SM_1972_18_2_a0
Yu. G. Zarhin; Yu. I. Manin. Height on families of Abelian varieties. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 169-179. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/