Height on families of Abelian varieties
Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 169-179
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be an Abelian variety imbedded in projective space, and let $L$ be an induced invertible sheaf on $X$.
In this paper explicit bounds are determined for the difference $\widehat h_L-h_L$, where $\widehat h_L$ is the Neron–Tate height and $h_L$ is the Weil height.
Bibliography: 5 titles.
@article{SM_1972_18_2_a0,
author = {Yu. G. Zarhin and Yu. I. Manin},
title = {Height on families of {Abelian} varieties},
journal = {Sbornik. Mathematics},
pages = {169--179},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/}
}
Yu. G. Zarhin; Yu. I. Manin. Height on families of Abelian varieties. Sbornik. Mathematics, Tome 18 (1972) no. 2, pp. 169-179. http://geodesic.mathdoc.fr/item/SM_1972_18_2_a0/