The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 139-149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the precise asymptotic behavior is given for the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric in the class of all bounded ($2\pi$-periodic) functions.
Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1972_18_1_a8,
     author = {B. Kh. Sendov and V. A. Popov},
     title = {The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the {Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {139--149},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a8/}
}
                      
                      
                    TY - JOUR AU - B. Kh. Sendov AU - V. A. Popov TI - The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric JO - Sbornik. Mathematics PY - 1972 SP - 139 EP - 149 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a8/ LA - en ID - SM_1972_18_1_a8 ER -
%0 Journal Article %A B. Kh. Sendov %A V. A. Popov %T The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric %J Sbornik. Mathematics %D 1972 %P 139-149 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a8/ %G en %F SM_1972_18_1_a8
B. Kh. Sendov; V. A. Popov. The exact asymptotic behavior of the best approximation by algebraic and trigonometric polynomials in the Hausdorff metric. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 139-149. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a8/
