Invariant subspaces of the shift operator in weighted Hilbert space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 111-138
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A complete description is given of the closed ideals of the algebra $H_1^2$ of functions $\widehat x(z)$ which are regular in the circle $U$ ($|z|1$) and such that $\widehat x'\in H^2$, with the norm
$$
\|\widehat x\|_{H_1^2}=(\|\widehat x\|_{H^2}^2+\|\widehat x'\|_{H^2}^2)^{1/2}
$$
and the usual multiplication. This is equivalent to a description of the invariant subspaces of the one-sided shift operator on the weighted Hilbert space of sequences with weights $p_k=1+k^2$ ($k=0,1,\dots$). It is shown that each closed ideal $I$ of the algebra $H_1^2$ has the form $I=\overline I\cap A$, where $\overline I$ is the closure of $I$ in the space $A$ of functions which are regular in $U$ and continuous in $\overline U$ with the uniform norm. Thus the ideals of the algebra $H_1^2$ have a structure similar to the structure of the ideals of the algebra $A$: each ideal $I$ is uniquely determined by an interior function $G$, which is the greatest common divisor of the interior parts of the functions $\widehat x\in I$, and the set $K\subset\partial U$ of the common zeros of the functions $\widehat x\in I$.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_1972_18_1_a7,
     author = {B. I. Korenblum},
     title = {Invariant subspaces of the shift operator in weighted {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {111--138},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/}
}
                      
                      
                    B. I. Korenblum. Invariant subspaces of the shift operator in weighted Hilbert space. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 111-138. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/
