Invariant subspaces of the shift operator in weighted Hilbert space
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 111-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete description is given of the closed ideals of the algebra $H_1^2$ of functions $\widehat x(z)$ which are regular in the circle $U$ ($|z|<1$) and such that $\widehat x'\in H^2$, with the norm $$ \|\widehat x\|_{H_1^2}=(\|\widehat x\|_{H^2}^2+\|\widehat x'\|_{H^2}^2)^{1/2} $$ and the usual multiplication. This is equivalent to a description of the invariant subspaces of the one-sided shift operator on the weighted Hilbert space of sequences with weights $p_k=1+k^2$ ($k=0,1,\dots$). It is shown that each closed ideal $I$ of the algebra $H_1^2$ has the form $I=\overline I\cap A$, where $\overline I$ is the closure of $I$ in the space $A$ of functions which are regular in $U$ and continuous in $\overline U$ with the uniform norm. Thus the ideals of the algebra $H_1^2$ have a structure similar to the structure of the ideals of the algebra $A$: each ideal $I$ is uniquely determined by an interior function $G$, which is the greatest common divisor of the interior parts of the functions $\widehat x\in I$, and the set $K\subset\partial U$ of the common zeros of the functions $\widehat x\in I$. Bibliography: 19 titles.
@article{SM_1972_18_1_a7,
     author = {B. I. Korenblum},
     title = {Invariant subspaces of the shift operator in weighted {Hilbert} space},
     journal = {Sbornik. Mathematics},
     pages = {111--138},
     year = {1972},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/}
}
TY  - JOUR
AU  - B. I. Korenblum
TI  - Invariant subspaces of the shift operator in weighted Hilbert space
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 111
EP  - 138
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/
LA  - en
ID  - SM_1972_18_1_a7
ER  - 
%0 Journal Article
%A B. I. Korenblum
%T Invariant subspaces of the shift operator in weighted Hilbert space
%J Sbornik. Mathematics
%D 1972
%P 111-138
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/
%G en
%F SM_1972_18_1_a7
B. I. Korenblum. Invariant subspaces of the shift operator in weighted Hilbert space. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 111-138. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a7/

[1] A. Beurling, “On two problems concerning linear transformations in Hilbert space”, Acta math., 81:1–2 (1949), 239–255 | DOI | MR | Zbl

[2] W. F. Donoghue, “The lattice of invaraiant subspaces of a completely continuous quasinilpotent transformation”, Pacific J. Math., 7:2 (1957), 10131–10036 | MR

[3] H. K. Nikolskii, “Invariantnye podprostranstva nekotorykh vpolne nepreryvnykh operatorov”, Vestnik LGU, seriya matem., mekh. i astron., 7:2 (1965), 68–77

[4] N. K. Nikolskii, “Nestandartnye idealy, odnokletochnost i algebry, svyazannye s operatorom sdviga”, Issledovaniya po lineinym operatoram i teorii funktsii, t. I, Leningrad, 1970, 156–195 | Zbl

[5] V. S. Korolevich, “Nekotorye banakhovy algebry analiticheskikh funktsii”, Izv. AN Arm. SSR, seriya matem., 5:4 (1970), 346–357 | MR | Zbl

[6] N. M. Osadchii, “Struktura glavnykh idealov odnogo koltsa analiticheskikh funktsii”, Ukr. matem. zh., 23:6 (1971), 753–763

[7] T. Carleman, L'intégrale de Fourier et questions qui sý rattachent, Uppsala, 1944 | MR | Zbl

[8] B. I. Korenblyum, “Obobschenie tauberovoi teoremy Vinera i garmonicheskii analiz bystrorastuschikh funktsii”, Trudy Mosk. matem. ob-va, VII (1958), 121–148

[9] W. Rudin, “The closed ideals in an algebra of analytic functions”, Canad. J. Math., 9 (1957), 426–434 | MR | Zbl

[10] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, Moskva, 1963

[11] B. I. Korenblyum, “O funktsiyakh, golomorfnykh v kruge i gladkikh vplot do ego granitsy”, DAN SSSR, 200:1 (1971), 24–28

[12] L. Carleson, “Sets of uniqueness for functions regular in the unit circle”, Acta math., 87:3–4 (1952), 325–345 | DOI | MR | Zbl

[13] M. A. Naimark, Normirovannye koltsa, Nauka, Moskva, 1968 | MR | Zbl

[14] S. Mandelbroit, Teoremy zamknutosti i teoremy kompozitsii, IL, Moskva, 1962

[15] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, Moskva, 1941

[16] S. E. Varshavskii, “Konformnoe otobrazhenie beskonechnykh polos”, Matematika, 2:4 (1958), 67–116

[17] B. I. Korenblyum, V. M. Faivyshevskii, “Ob odnom klasse szhimayuschikh operatorov, svyazannykh s delimostyu analiticheskikh funktsii”, Ukr. matem. zh., 24 (1972)

[18] B. I. Korenblyum, “Ob odnom ekstremalnom svoistve vneshnikh funktsii”, Matem. zametki, 10:1 (1971), 53–56 | MR | Zbl

[19] B. I. Korenblyum, V. S. Korolevich, “Ob analiticheskikh funktsiyakh, regulyarnykh v kruge i gladkikh na ego granitse”, Matem. zametki, 7:2 (1970), 165–172 | Zbl