A~freedom theorem for groups with one defining relation in the varieties of solvable and nilpotent groups of given lengths
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 93-99

Voir la notice de l'article provenant de la source Math-Net.Ru

The freedom theorem of Magnus is well known: if a group $G$ is given by generators $x_1,x_2,\dots$ and a single defining relation $r=1$, and if $r$ is not conjugate to any word in $x_2,\dots$, then the elements $x_2,\dots$ freely generate in $G$ a free subgroup. In this note analogous theorems of Magnus are established for groups given by one defining relation in the varieties of soluble and nilpotent groups of given lengths. Bibliography: 7 titles.
@article{SM_1972_18_1_a5,
     author = {N. S. Romanovskii},
     title = {A~freedom theorem for groups with one defining relation in the varieties of solvable and nilpotent groups of given lengths},
     journal = {Sbornik. Mathematics},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - A~freedom theorem for groups with one defining relation in the varieties of solvable and nilpotent groups of given lengths
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 93
EP  - 99
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a5/
LA  - en
ID  - SM_1972_18_1_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T A~freedom theorem for groups with one defining relation in the varieties of solvable and nilpotent groups of given lengths
%J Sbornik. Mathematics
%D 1972
%P 93-99
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a5/
%G en
%F SM_1972_18_1_a5
N. S. Romanovskii. A~freedom theorem for groups with one defining relation in the varieties of solvable and nilpotent groups of given lengths. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a5/