The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 83-92
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that a regular complete two-dimensional Riemainnian metric $ds^2$, having curvature $K0$ subject to the condition $\sup|\frac\partial{\partial s}(|K|^{1/2})|+\infty$, cannot be embedded in $R^3$ in the class of smooth surfaces regular except at a number of isolated points. The result is extended to metrics with singular points.
Bibliography: 12 titles.
@article{SM_1972_18_1_a4,
author = {\`E. R. Rozendorn},
title = {The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces},
journal = {Sbornik. Mathematics},
pages = {83--92},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/}
}
TY - JOUR AU - È. R. Rozendorn TI - The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces JO - Sbornik. Mathematics PY - 1972 SP - 83 EP - 92 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/ LA - en ID - SM_1972_18_1_a4 ER -
È. R. Rozendorn. The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/