The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 83-92

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that a regular complete two-dimensional Riemainnian metric $ds^2$, having curvature $K0$ subject to the condition $\sup|\frac\partial{\partial s}(|K|^{1/2})|+\infty$, cannot be embedded in $R^3$ in the class of smooth surfaces regular except at a number of isolated points. The result is extended to metrics with singular points. Bibliography: 12 titles.
@article{SM_1972_18_1_a4,
     author = {\`E. R. Rozendorn},
     title = {The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces},
     journal = {Sbornik. Mathematics},
     pages = {83--92},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/}
}
TY  - JOUR
AU  - È. R. Rozendorn
TI  - The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 83
EP  - 92
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/
LA  - en
ID  - SM_1972_18_1_a4
ER  - 
%0 Journal Article
%A È. R. Rozendorn
%T The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces
%J Sbornik. Mathematics
%D 1972
%P 83-92
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/
%G en
%F SM_1972_18_1_a4
È. R. Rozendorn. The nonembeddability of complete $q$-metrics of negative curvature in a~class of weakly nonregular surfaces. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a4/