Positive solutions of linear quasielliptic evolution equations
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 15-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a new class of elliptic equations whose characteristic surfaces are hyperplanes $t=\mathrm{const}$. We establish integrability of positive solutions of such equations with power weights in regions adjoining characteristic hyperplanes and in cylinders with generators parallel to the time axis. Information is obtained on the behavior of such solutions in unbounded regions. Examples which illustrate the accuracy of the results are mentioned.
Bibliography: 7 titles.
@article{SM_1972_18_1_a1,
author = {V. A. Kondrat'ev and T. G. Pletneva and S. D. \`Eidel'man},
title = {Positive solutions of linear quasielliptic evolution equations},
journal = {Sbornik. Mathematics},
pages = {15--44},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a1/}
}
TY - JOUR AU - V. A. Kondrat'ev AU - T. G. Pletneva AU - S. D. Èidel'man TI - Positive solutions of linear quasielliptic evolution equations JO - Sbornik. Mathematics PY - 1972 SP - 15 EP - 44 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a1/ LA - en ID - SM_1972_18_1_a1 ER -
V. A. Kondrat'ev; T. G. Pletneva; S. D. Èidel'man. Positive solutions of linear quasielliptic evolution equations. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 15-44. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a1/