Approximation properties of finite-dimensional subspaces in~$L_1$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that if a measure $\mu$ has no atoms, then the space $L_1(T,\mu)$ contains no finite-dimensional Chebyshev subspace. In the present work it is shown that an arbitrary finite-dimensional subspace $E$ in $L_1(T,\mu)$ (for which the measure has no atoms) is almost Chebyshev, i.e. the set of elements possessing nonunique best approximations in the given finite-dimensional space $E$ is of the first category. At the same time this set is everywhere dense. There is further given a characterization of elements with nonunique best approximations.
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1972_18_1_a0,
     author = {S. Ya. Havinson and Z. S. Romanova},
     title = {Approximation properties of finite-dimensional subspaces in~$L_1$},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/}
}
                      
                      
                    S. Ya. Havinson; Z. S. Romanova. Approximation properties of finite-dimensional subspaces in~$L_1$. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/
