Approximation properties of finite-dimensional subspaces in~$L_1$
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that if a measure $\mu$ has no atoms, then the space $L_1(T,\mu)$ contains no finite-dimensional Chebyshev subspace. In the present work it is shown that an arbitrary finite-dimensional subspace $E$ in $L_1(T,\mu)$ (for which the measure has no atoms) is almost Chebyshev, i.e. the set of elements possessing nonunique best approximations in the given finite-dimensional space $E$ is of the first category. At the same time this set is everywhere dense. There is further given a characterization of elements with nonunique best approximations. Bibliography: 16 titles.
@article{SM_1972_18_1_a0,
     author = {S. Ya. Havinson and Z. S. Romanova},
     title = {Approximation properties of finite-dimensional subspaces in~$L_1$},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/}
}
TY  - JOUR
AU  - S. Ya. Havinson
AU  - Z. S. Romanova
TI  - Approximation properties of finite-dimensional subspaces in~$L_1$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 1
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/
LA  - en
ID  - SM_1972_18_1_a0
ER  - 
%0 Journal Article
%A S. Ya. Havinson
%A Z. S. Romanova
%T Approximation properties of finite-dimensional subspaces in~$L_1$
%J Sbornik. Mathematics
%D 1972
%P 1-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/
%G en
%F SM_1972_18_1_a0
S. Ya. Havinson; Z. S. Romanova. Approximation properties of finite-dimensional subspaces in~$L_1$. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/