Approximation properties of finite-dimensional subspaces in $L_1$
Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that if a measure $\mu$ has no atoms, then the space $L_1(T,\mu)$ contains no finite-dimensional Chebyshev subspace. In the present work it is shown that an arbitrary finite-dimensional subspace $E$ in $L_1(T,\mu)$ (for which the measure has no atoms) is almost Chebyshev, i.e. the set of elements possessing nonunique best approximations in the given finite-dimensional space $E$ is of the first category. At the same time this set is everywhere dense. There is further given a characterization of elements with nonunique best approximations. Bibliography: 16 titles.
@article{SM_1972_18_1_a0,
     author = {S. Ya. Havinson and Z. S. Romanova},
     title = {Approximation properties of finite-dimensional subspaces in~$L_1$},
     journal = {Sbornik. Mathematics},
     pages = {1--14},
     year = {1972},
     volume = {18},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/}
}
TY  - JOUR
AU  - S. Ya. Havinson
AU  - Z. S. Romanova
TI  - Approximation properties of finite-dimensional subspaces in $L_1$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 1
EP  - 14
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/
LA  - en
ID  - SM_1972_18_1_a0
ER  - 
%0 Journal Article
%A S. Ya. Havinson
%A Z. S. Romanova
%T Approximation properties of finite-dimensional subspaces in $L_1$
%J Sbornik. Mathematics
%D 1972
%P 1-14
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/
%G en
%F SM_1972_18_1_a0
S. Ya. Havinson; Z. S. Romanova. Approximation properties of finite-dimensional subspaces in $L_1$. Sbornik. Mathematics, Tome 18 (1972) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/SM_1972_18_1_a0/

[1] J. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Acad. SRR, Bucharest, Springer-Verlag, Berlin, 1970 | MR

[2] A. L. Garkavi, “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki. Matematicheskii analiz. 1967, VINITI, Moskva, 1969, 75–132

[3] P. Khalmosh, Teoriya mery, IL, Moskva, 1953

[4] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. 1, IL, Moskva, 1962

[5] M. G. Krein, “$L$-problema momentov v abstraktnom lineinom normirovannom prostranstve”, Statya IV v kn. N. Akhiezer i M. Krein, O nekotorykh voprosakh teorii momentov, ONTI, Kharkov, 1938

[6] R. R. Phelps, “Unigueness of Hahn–Banach extensions and unigue best approximation”, Trans. Amer. Math. Soc., 95:2 (1960), 238–255 | DOI | MR | Zbl

[7] R. M. Moroney, “The Haar problem in $L_1$”, Proc. Amer. Math. Soc., 12:5 (1961), 793–795 | DOI | MR | Zbl

[8] S. B. Stechkin, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Rev. Math. Pures et Appl. (R.P.R), 8:1 (1963), 5–18 | Zbl

[9] A. L. Garkavi, “O chebyshevskikh i pochti-chebyshevskikh podprostranstvakh”, DAN SSSR, 149:6 (1963), 1249–1252 | MR

[10] A. L. Garkavi, “O chebyshevskikh i pochti-chebyshevskikh podprostranstvakh”, Izv. AN SSSR, seriya matem., 28:4 (1964), 799–818 | MR | Zbl

[11] A. L. Garkavi, “Pochti-chebyshevskie sistemy nepreryvnykh funktsii”, Izv. VUZov, Matematika, 1965, no. 2, 36–44 | MR | Zbl

[12] S. Ya. Khavinson, “O edinstvennosti funktsii nailuchshego priblizheniya v metrike prostranstva $L_1$”, Izv. AN SSSR, seriya matem., 22:2 (1958), 243–270 | MR | Zbl

[13] S. Ya. Khavinson, “K voprosu o edinstvennosti mnogochlena nailuchshego priblizheniya v metrike prostranstva $L_1$”, DAN SSSR, 105:6 (1955), 1159–1161

[14] A. L. Garkavi, “O edinstvennosti resheniya $L$-problemy momentov”, Izv. AN SSSR, seriya matem., 28:3 (1964), 553–570 | MR | Zbl

[15] A. A. Lyapunov, “O vpolne additivnykh vektorakh-funktsiyakh”, Izv. AN SSSR, seriya matem., 4:6 (1940), 465–478 | MR | Zbl

[16] P. R. Halmos, “The range of a vector measure”, Bull. Amer. Math. Soc., 54 (1948), 416–421 | DOI | MR | Zbl