A~problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 603-616
Voir la notice de l'article provenant de la source Math-Net.Ru
The equation
$$
\psi^2(t,x)u_{tt}+\varphi(t,x)u_t-M\biggl(t,x,\frac{\partial}{\partial x}\biggr)u=f(t,x)
$$
is considered on the strip $H=(0,T]\times\mathbf R_x^n$. Here $M$ is a linear elliptic operator of the second order, and $\psi$ and $\varphi$ are nonnegative on $H$ and have a zero at least of the first order on a hyperplane $t=0$. Hence for $t=0$ we cannot give the initial values. Precise restrictions on the growth of the desired function for $|x|\to\infty$ are found guaranteeing the existence and uniqueness of a generalized solution of the problem without initial conditions.
Bibliography: 11 titles.
@article{SM_1972_17_4_a9,
author = {A. S. Kalashnikov},
title = {A~problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence},
journal = {Sbornik. Mathematics},
pages = {603--616},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a9/}
}
TY - JOUR AU - A. S. Kalashnikov TI - A~problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence JO - Sbornik. Mathematics PY - 1972 SP - 603 EP - 616 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_17_4_a9/ LA - en ID - SM_1972_17_4_a9 ER -
%0 Journal Article %A A. S. Kalashnikov %T A~problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence %J Sbornik. Mathematics %D 1972 %P 603-616 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1972_17_4_a9/ %G en %F SM_1972_17_4_a9
A. S. Kalashnikov. A~problem without initial conditions for linear degenerate hyperbolic equations of second order with infinite domain of dependence. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 603-616. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a9/