Bases of the space of continuous functions
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 583-602

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, new bases for the space of continuous functions are constructed, similar to the Schauder basis but having better differentiability properties. The bases constructed are applied to the problem of the order of growth of the degrees of a polynomial basis of the space $C(0,1)$. It is proved that for any nondecreasing sequence of natural numbers $\{\omega(n)\}_{n=0}^\infty$ satisfying the condition $\sum_{n=2}^{\infty}\frac1{n\ln n\omega(n)}\infty$ it is possible to construct a polynomial basis with order of growth $\nu_n\leqslant n\omega(n)$, $n=0,1,2,\dots$ . Bibliography: 16 titles.
@article{SM_1972_17_4_a8,
     author = {Z. A. Chanturiya},
     title = {Bases of the space of continuous functions},
     journal = {Sbornik. Mathematics},
     pages = {583--602},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/}
}
TY  - JOUR
AU  - Z. A. Chanturiya
TI  - Bases of the space of continuous functions
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 583
EP  - 602
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/
LA  - en
ID  - SM_1972_17_4_a8
ER  - 
%0 Journal Article
%A Z. A. Chanturiya
%T Bases of the space of continuous functions
%J Sbornik. Mathematics
%D 1972
%P 583-602
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/
%G en
%F SM_1972_17_4_a8
Z. A. Chanturiya. Bases of the space of continuous functions. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 583-602. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/