Bases of the space of continuous functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 583-602
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, new bases for the space of continuous functions are constructed, similar to the Schauder basis but having better differentiability properties. The bases constructed are applied to the problem of the order of growth of the degrees of a polynomial basis of the space $C(0,1)$. It is proved that for any nondecreasing sequence of natural numbers $\{\omega(n)\}_{n=0}^\infty$ satisfying the condition $\sum_{n=2}^{\infty}\frac1{n\ln n\omega(n)}\infty$ it is possible to construct a polynomial basis with order of growth $\nu_n\leqslant n\omega(n)$, $n=0,1,2,\dots$ .
Bibliography: 16 titles.
			
            
            
            
          
        
      @article{SM_1972_17_4_a8,
     author = {Z. A. Chanturiya},
     title = {Bases of the space of continuous functions},
     journal = {Sbornik. Mathematics},
     pages = {583--602},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/}
}
                      
                      
                    Z. A. Chanturiya. Bases of the space of continuous functions. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 583-602. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a8/
