On existence conditions for the Stieltjes integral
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 515-527
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A modification of the definition of the Stieltjes integral $\int_0^1f\,dg$ is proposed, and it is shown that this integral exists if $g\in\operatorname{Lip}\alpha$, $f\in W_1^{1-\alpha}$, and $0\alpha1$ ($W_1^{1-\alpha}$ is the Sobolev–Slobodetskii class. It is shown that this integral defines a general form of a linear functional on $W_1^{1-\alpha}$ and on the class $\operatorname{Lip}_0\alpha$ of functions $g$ for which $g(x)-g(y)=o(|x-y|^\alpha)$. Applications to the integration of abstract functions and to the theory of double operator integrals are given.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_1972_17_4_a3,
     author = {V. I. Matsaev and M. Z. Solomyak},
     title = {On existence conditions for the {Stieltjes} integral},
     journal = {Sbornik. Mathematics},
     pages = {515--527},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a3/}
}
                      
                      
                    V. I. Matsaev; M. Z. Solomyak. On existence conditions for the Stieltjes integral. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 515-527. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a3/
