Deformations of smooth analytic fiberings on spaces with resolvable singularities
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 617-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper a complete family of deformations is constructed of smooth complex analytic fiberings on complex spaces with resolvable singularities. Bibliography: 5 titles.
@article{SM_1972_17_4_a10,
     author = {D. A. Ponomarev},
     title = {Deformations of smooth analytic fiberings on spaces with resolvable singularities},
     journal = {Sbornik. Mathematics},
     pages = {617--623},
     year = {1972},
     volume = {17},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a10/}
}
TY  - JOUR
AU  - D. A. Ponomarev
TI  - Deformations of smooth analytic fiberings on spaces with resolvable singularities
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 617
EP  - 623
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_4_a10/
LA  - en
ID  - SM_1972_17_4_a10
ER  - 
%0 Journal Article
%A D. A. Ponomarev
%T Deformations of smooth analytic fiberings on spaces with resolvable singularities
%J Sbornik. Mathematics
%D 1972
%P 617-623
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1972_17_4_a10/
%G en
%F SM_1972_17_4_a10
D. A. Ponomarev. Deformations of smooth analytic fiberings on spaces with resolvable singularities. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 617-623. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a10/

[1] A. L. Onischik, “O deformatsiyakh rassloennykh prostranstv”, DAN SSSR, 161:1 (1965), 45–47 | Zbl

[2] J. Frisch, “Aplatissement en geometrie analytique”, Ann, Scient. Ecole Norm Super. Ser. 4, 1:2 (1968), 305–312 | MR | Zbl

[3] H. W. Schuster, “Zur Theorie der Deformationen kompakter kompiexer Raume”, Invent. Math., 9:4 (1970), 284–294 | DOI | MR | Zbl

[4] G. Grauert, Odna teorema iz teorii analiticheskikh puchkov, Kompleksnye prostranstva, Mir, Moskva, 1965 | MR

[5] J. Frenkel, “Cohomologie ncn abelienne et espaces fibres”, Bull. Soc. Math. France, 85 (1957), 135–218 | MR