On three-dimensional dynamical systems close to systems with a struc­tu­rally unstable homoclinic curve. I
Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 467-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper three-dimensional dynamical systems are considered that are close to systems with a structurally unstable homoclinic curve, i.e. with a path biasymptotic to a structurally stable periodic motion of saddle type to which the stable and unstable manifolds are tangent. Under the assumption that the tangency is the simplest structurally unstable one, it is established that in the set of paths lying entirely in an extended neighborhood of a periodic motion there is a subset whose paths are in one-to-one correspondence with the paths of a subsystem of a Bernoulli scheme of three symbols. Figures: 5. Bibliography: 6 titles.
@article{SM_1972_17_4_a0,
     author = {N. K. Gavrilov and L. P. Shilnikov},
     title = {On three-dimensional dynamical systems close to systems with a~struc\-tu\-rally unstable homoclinic {curve.~I}},
     journal = {Sbornik. Mathematics},
     pages = {467--485},
     year = {1972},
     volume = {17},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_4_a0/}
}
TY  - JOUR
AU  - N. K. Gavrilov
AU  - L. P. Shilnikov
TI  - On three-dimensional dynamical systems close to systems with a struc­tu­rally unstable homoclinic curve. I
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 467
EP  - 485
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_4_a0/
LA  - en
ID  - SM_1972_17_4_a0
ER  - 
%0 Journal Article
%A N. K. Gavrilov
%A L. P. Shilnikov
%T On three-dimensional dynamical systems close to systems with a struc­tu­rally unstable homoclinic curve. I
%J Sbornik. Mathematics
%D 1972
%P 467-485
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1972_17_4_a0/
%G en
%F SM_1972_17_4_a0
N. K. Gavrilov; L. P. Shilnikov. On three-dimensional dynamical systems close to systems with a struc­tu­rally unstable homoclinic curve. I. Sbornik. Mathematics, Tome 17 (1972) no. 4, pp. 467-485. http://geodesic.mathdoc.fr/item/SM_1972_17_4_a0/

[1] A. A. Andronov, E. A. Leontovich, I. I. Gordon, I. G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, Moskva, 1967

[2] E. A. Leontovich, “O rozhdenii predelnykh tsiklov iz separatrisy”, DAN SSSR, 28:4 (1951), 641–644

[3] L. P. Shilnikov, “O rozhdenii periodicheskogo dvizheniya iz traektorii, dvoyakoasimptoticheskoi k sostoyaniyu ravnovesiya tipa sedlo”, Matem. sb., 77(119) (1968), 461–472

[4] L. P. Shilnikov, “K voprosu o strukture rasshirennoi okrestnosti sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81(123) (1970), 92–103 | Zbl

[5] L. P. Shilnikov, “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74(116) (1967), 378–397

[6] L. P. Shilnikov, “K voprosu o strukture okrestnosti gomoklinicheskoi truby invariantnogo tora”, DAN SSSR, 180:2 (1968), 286–289 | Zbl