Subsequences of the Fourier sums of functions with a given modulus of continuity
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 441-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for each modulus of continuity $\omega(\delta)$ in the class $H_\omega$ there exists a function $f$ such that for any increasing sequence $\{n_i\}_{i=1}^\infty$ of natural numbers there is a point $x$ at which \begin{gather*} \varlimsup_{t\to\infty}\frac{S_{n_i}(f,x)-f(x)}{\omega(n_i^{-1})\log{n_i}}\geqslant A>0,\\ \varliminf_{t\to\infty}\frac{S_{n_i}(f,x)-f(x)}{\omega (n_i^{-1})\log{n_i}} \leqslant-A<0, \end{gather*} where $A$ is an absolute constant. Also considered is the approximation by sequences of Fourier sums of functions of bounded variation with given modulus of continuity. Bibliography: 7 titles.
@article{SM_1972_17_3_a6,
     author = {K. I. Oskolkov},
     title = {Subsequences of the {Fourier} sums of functions with a~given modulus of continuity},
     journal = {Sbornik. Mathematics},
     pages = {441--465},
     year = {1972},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - Subsequences of the Fourier sums of functions with a given modulus of continuity
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 441
EP  - 465
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/
LA  - en
ID  - SM_1972_17_3_a6
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T Subsequences of the Fourier sums of functions with a given modulus of continuity
%J Sbornik. Mathematics
%D 1972
%P 441-465
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/
%G en
%F SM_1972_17_3_a6
K. I. Oskolkov. Subsequences of the Fourier sums of functions with a given modulus of continuity. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 441-465. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/

[1] D. E. Menshov, “Sur les sommes partielles des series de Fourier des fonctions continues”, Matem. sb., 15(57) (1944), 385–432 | MR

[2] H. Lebesgue, “Sur la representation trigonometrique approchee des fonctions satisfaisant a une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR | Zbl

[3] On Approximation Theory, Proc. Conf. Oberwolfach, Birkhauser-Verlag, Basel–Stuttgart, 1964

[4] K. I. Oskolkov, “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Trudy matem. in-ta im. V. A. Steklova, CKhII (1971), 337–345 | MR

[5] S. B. Stechkin, “O priblizhenii nepreryvnykh funktsii summami Fure”, Uspekhi Matem. nauk, VII:4(50) (1952), 139–141

[6] R. Salem, A. Zygmund, “The approximation by partial sums of Fourier series”, Trans. Amer. Math. Soc., 59 (1946), 14–21 | DOI | MR

[7] S. M. Nikolskii, “Ryad Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52:3 (1946), 191–194