@article{SM_1972_17_3_a6,
author = {K. I. Oskolkov},
title = {Subsequences of the {Fourier} sums of functions with a~given modulus of continuity},
journal = {Sbornik. Mathematics},
pages = {441--465},
year = {1972},
volume = {17},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/}
}
K. I. Oskolkov. Subsequences of the Fourier sums of functions with a given modulus of continuity. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 441-465. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a6/
[1] D. E. Menshov, “Sur les sommes partielles des series de Fourier des fonctions continues”, Matem. sb., 15(57) (1944), 385–432 | MR
[2] H. Lebesgue, “Sur la representation trigonometrique approchee des fonctions satisfaisant a une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210 | MR | Zbl
[3] On Approximation Theory, Proc. Conf. Oberwolfach, Birkhauser-Verlag, Basel–Stuttgart, 1964
[4] K. I. Oskolkov, “Neusilyaemost otsenki Lebega dlya priblizheniya funktsii s zadannym modulem nepreryvnosti summami Fure”, Trudy matem. in-ta im. V. A. Steklova, CKhII (1971), 337–345 | MR
[5] S. B. Stechkin, “O priblizhenii nepreryvnykh funktsii summami Fure”, Uspekhi Matem. nauk, VII:4(50) (1952), 139–141
[6] R. Salem, A. Zygmund, “The approximation by partial sums of Fourier series”, Trans. Amer. Math. Soc., 59 (1946), 14–21 | DOI | MR
[7] S. M. Nikolskii, “Ryad Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52:3 (1946), 191–194