On the indecomposability of Borel manifolds
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 436-440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Here we prove the indecomposability of the homogeneous space $G/T$ of a simple compact connected Lie group $G$ modulo a maximal torus $T$ (the author calls such manifolds Borel manifolds). From this and from the results of A. L. Onishchik we get a description of all the connected Lie groups which act transitively on Borel manifolds. This description is given in the paper. Bibliography: 5 titles.
@article{SM_1972_17_3_a5,
     author = {M. Ya. Blinkin},
     title = {On the indecomposability of {Borel} manifolds},
     journal = {Sbornik. Mathematics},
     pages = {436--440},
     year = {1972},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a5/}
}
TY  - JOUR
AU  - M. Ya. Blinkin
TI  - On the indecomposability of Borel manifolds
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 436
EP  - 440
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a5/
LA  - en
ID  - SM_1972_17_3_a5
ER  - 
%0 Journal Article
%A M. Ya. Blinkin
%T On the indecomposability of Borel manifolds
%J Sbornik. Mathematics
%D 1972
%P 436-440
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a5/
%G en
%F SM_1972_17_3_a5
M. Ya. Blinkin. On the indecomposability of Borel manifolds. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 436-440. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a5/

[1] A. Borel, “O kogomologiyakh glavnykh rassloennykh prostranstv”, Rassloennye prostranstva, IL, Moskva, 1958, 163–244

[2] A. L. Onischik, “O tranzitivnykh kompaktnykh gruppakh preobrazovanii”, Matem. sb., 60(102) (1963), 447–485 | Zbl

[3] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh. III”, Matem. sb., 75(117) (1968), 255–263 | Zbl

[4] E. B. Vinberg, A. L. Onischik, Seminar po algebraicheskim gruppam i gruppam Li, MGU, Moskva, 1969

[5] R. Steinberg, “Invariants of finite reflection groups”, Canad. J. Math., 12:4 (1960), 616–618 | MR | Zbl