Smoothing and inversion of differential operators
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 381-435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nash's implicit function theorem is generalized. The analytical results are applied to the problem of isometric immersion; in particular, the realizability in Euclidean space of real-analytic Riemannian manifolds is demonstrated. Moreover, theorems about the existence, approximation, extension and transversality of isometric immersion and related maps are stated; deformations and questions about unique definability are also investigated. In addition to the implicit function theorem, the theory of topological sheaves is used. Bibliography: 20 titles.
@article{SM_1972_17_3_a4,
     author = {M. L. Gromov},
     title = {Smoothing and inversion of differential operators},
     journal = {Sbornik. Mathematics},
     pages = {381--435},
     year = {1972},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/}
}
TY  - JOUR
AU  - M. L. Gromov
TI  - Smoothing and inversion of differential operators
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 381
EP  - 435
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/
LA  - en
ID  - SM_1972_17_3_a4
ER  - 
%0 Journal Article
%A M. L. Gromov
%T Smoothing and inversion of differential operators
%J Sbornik. Mathematics
%D 1972
%P 381-435
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/
%G en
%F SM_1972_17_3_a4
M. L. Gromov. Smoothing and inversion of differential operators. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 381-435. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/

[1] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1969

[2] M. L. Gromov, “Transversalnye otobrazheniya sloenii”, DAN SSSR, 182:2 (1968), 255–258 | MR | Zbl

[3] M. L. Gromov, “Stabilnye otobrazheniya sloenii mnogoobraziya”, Izv. AN SSSR, seriya matem., 33 (1969), 707–734 | MR | Zbl

[4] M. L. Gromov, “Izometricheskie vlozheniya i pogruzheniya”, DAN SSSR, 192:6 (1970), 1206–1209 | MR | Zbl

[5] M. L. Gromov, V. A. Rokhlin, “Vlozheniya i pogruzheniya v rimanovoi geometrii”, Uspekhi matem. nauk, XXV:5(155) (1970), 3–62 | MR

[6] Dzh. Mezer, “Strukturnaya ustoichivost otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, Moskva, 1968 | MR

[7] V. Spanier, Dzh. Uaitkhed, “Teoriya nositelei i $S$-teoriya”, Matematika, 3:1 (1959), 327–344 | MR

[8] Ya. M. Eliashberg, “Ob osobennostyakh tipa skladki”, Izv. AN SSSR, seriya matem., 34:5 (1970), 1110–1126 | MR | Zbl

[9] H. Cartan, “Varietes analytiques reelles et varietes analytiques complexes”, Bull. Soc Math. France, 85 (1957), 77–99 | MR | Zbl

[10] S. D. Feit, “$k$-mersions of manifolds”, Acta math., 122:3–4 (1969), 173–195 | DOI | MR | Zbl

[11] R. E. Green, Isometric embeddings of riemannian and pseudo-riemannian manifolds, Mem. Amer. Math. Soc., no. 97, 1970 | MR

[12] M. Hirsch, “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[13] M. Hirsch, “On embedding differentiable manifolds in Euclidean space”, Ann. Math., 73 (1961), 566–571 | DOI | MR | Zbl

[14] J. Moser, “A new technique for the construction of solutions of non-linear differential equations”, Proc Nat. Acad. Sci. USA, 47 (1961), 1824–1831 | DOI | MR | Zbl

[15] J. Moser, “On the volume element on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[16] J. Nash, “Imbedding of Riemannian manifolds”, Ann. Math., 63:1 (1956), 20–63 | DOI | MR | Zbl

[17] J. Nash, “Analyticity of solutions of implicit function problems with analytic data”, Ann. Math., 84:2 (1966), 221–234 | MR

[18] Z. Ogrodzka, “On simultaneous extension of infinitely differentiable functions”, Studia Math., 28 (1967), 193–207 | MR | Zbl

[19] A. Phillips, “Foliations on open manifolds. II”, Comm. Math. Helv., 44 (1969), 367–370 | DOI | MR | Zbl

[20] J. Schwartz, “On Nash's implicit functional theorem”, Comm. Pure Appl. Math., 13 (1960), 509–530 | DOI | MR | Zbl