Smoothing and inversion of differential operators
Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 381-435

Voir la notice de l'article provenant de la source Math-Net.Ru

Nash's implicit function theorem is generalized. The analytical results are applied to the problem of isometric immersion; in particular, the realizability in Euclidean space of real-analytic Riemannian manifolds is demonstrated. Moreover, theorems about the existence, approximation, extension and transversality of isometric immersion and related maps are stated; deformations and questions about unique definability are also investigated. In addition to the implicit function theorem, the theory of topological sheaves is used. Bibliography: 20 titles.
@article{SM_1972_17_3_a4,
     author = {M. L. Gromov},
     title = {Smoothing and inversion of differential operators},
     journal = {Sbornik. Mathematics},
     pages = {381--435},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/}
}
TY  - JOUR
AU  - M. L. Gromov
TI  - Smoothing and inversion of differential operators
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 381
EP  - 435
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/
LA  - en
ID  - SM_1972_17_3_a4
ER  - 
%0 Journal Article
%A M. L. Gromov
%T Smoothing and inversion of differential operators
%J Sbornik. Mathematics
%D 1972
%P 381-435
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/
%G en
%F SM_1972_17_3_a4
M. L. Gromov. Smoothing and inversion of differential operators. Sbornik. Mathematics, Tome 17 (1972) no. 3, pp. 381-435. http://geodesic.mathdoc.fr/item/SM_1972_17_3_a4/