On a Stein manifold the Dolbeault complex splits in positive dimensions
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 289-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we find necessary and sufficient conditions for the $\overline\partial$ operator, acting in the Dolbeault complex of an analytic locally free sheaf of finite type on a complex manifold, to split in a given dimension, i.e. to possess a linear continuous right inverse operator. In particular, from this it follows that on a Stein manifold the $\overline\partial$ operator always splits in all positive dimensions, while it does not split in dimension zero. We also consider some questions connected with this; in particular, the splitting of operators in the Frechet spaces and the splitting of the de Rham complex on a differentiable manifold. Bibliography: 11 titles.
@article{SM_1972_17_2_a9,
     author = {V. P. Palamodov},
     title = {On {a~Stein} manifold the {Dolbeault} complex splits in positive dimensions},
     journal = {Sbornik. Mathematics},
     pages = {289--316},
     year = {1972},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - On a Stein manifold the Dolbeault complex splits in positive dimensions
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 289
EP  - 316
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/
LA  - en
ID  - SM_1972_17_2_a9
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T On a Stein manifold the Dolbeault complex splits in positive dimensions
%J Sbornik. Mathematics
%D 1972
%P 289-316
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/
%G en
%F SM_1972_17_2_a9
V. P. Palamodov. On a Stein manifold the Dolbeault complex splits in positive dimensions. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 289-316. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/

[1] F. Trèves, Locally convex spaces and linear partial differential equations, Appendix C, Springer-Verlag, 1967 | MR | Zbl

[2] B. S. Mityagin, G. M. Khenkin, “Lineinye zadachi kompleksnogo analiza”, Uspekhi matem. nauk, XXVI:4(160) (1971), 93–152

[3] V. P. Palamodov, Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, Moskva, 1967 | MR

[4] L. Khërmander, “Otsenki v $L_2$ i teoremy suschestvovaniya dlya operatora $\overline\partial$”, Matematika, 10:2 (1966), 59–116

[5] V. P. Palamodov, “Gomologicheskie metody v teorii lokalno vypuklykh prostranstv”, Uspekhi matem. nauk, XXVI:1(157) (1971), 3–65 | MR

[6] R. Ganning, X. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, Moskva, 1969 | MR

[7] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, Moskva, 1961

[8] J. Frenkel, “Cohomologie non abélienne et espaces fibrés”, Bull. Soc. math. France, 85 (1957), 135–218 | MR

[9] J.-B. Poly, “Sur les opérateurs differentiels et les morphismes directes”, C. R. Acad. Sci., 270:10 (1970), 647–649 | MR | Zbl

[10] Zh. Dedonne, L. Shvarts, “Dvoistvennost v prostranstvakh $F$ i $LF$”, Matematika, 2:2 (1958), 77–107

[11] J. H. C. Whitehead, “On $C^1$-complexes”, Ann. Math., 37 (1936), 645–680 | DOI | MR