On a~Stein manifold the Dolbeault complex splits in positive dimensions
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 289-316

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find necessary and sufficient conditions for the $\overline\partial$ operator, acting in the Dolbeault complex of an analytic locally free sheaf of finite type on a complex manifold, to split in a given dimension, i.e. to possess a linear continuous right inverse operator. In particular, from this it follows that on a Stein manifold the $\overline\partial$ operator always splits in all positive dimensions, while it does not split in dimension zero. We also consider some questions connected with this; in particular, the splitting of operators in the Frechet spaces and the splitting of the de Rham complex on a differentiable manifold. Bibliography: 11 titles.
@article{SM_1972_17_2_a9,
     author = {V. P. Palamodov},
     title = {On {a~Stein} manifold the {Dolbeault} complex splits in positive dimensions},
     journal = {Sbornik. Mathematics},
     pages = {289--316},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - On a~Stein manifold the Dolbeault complex splits in positive dimensions
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 289
EP  - 316
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/
LA  - en
ID  - SM_1972_17_2_a9
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T On a~Stein manifold the Dolbeault complex splits in positive dimensions
%J Sbornik. Mathematics
%D 1972
%P 289-316
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/
%G en
%F SM_1972_17_2_a9
V. P. Palamodov. On a~Stein manifold the Dolbeault complex splits in positive dimensions. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 289-316. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a9/