@article{SM_1972_17_2_a8,
author = {A. P. Terekhin},
title = {Functions of bounded $q$-integral $p$-variation and imbedding theorems},
journal = {Sbornik. Mathematics},
pages = {279--288},
year = {1972},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/}
}
A. P. Terekhin. Functions of bounded $q$-integral $p$-variation and imbedding theorems. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/
[1] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, Moskva, 1957 | MR
[2] A. P. Terekhin, “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. VUZov, Matematika, 1965, no. 2, 171–187 | Zbl
[3] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Massachusett's J. Math., 3 (1924), 72–94 | Zbl
[4] G. Hardy, J. Littlewood, “Some properties of fractional integrals. I”, Math. Z., 27 (1928), 565–606 | DOI | MR | Zbl
[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, Moskva, 1960
[6] A. P. Terekhin, “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | Zbl
[7] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Novosibirsk, 1962
[8] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Moskva, 1969 | MR
[9] L. C. Young, “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR | Zbl