Functions of bounded $q$-integral $p$-variation and imbedding theorems
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 279-288

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function of one real variable there is defined a notion of $q$-integral $p$-variation generalizing Wiener $p$-variation. In terms of this notion there is given a necessary and sufficient condition that a function in $L_q$ have a higher derivative in $L_p$ ($p\leqslant q$), and also that the derivative have a definite smoothness in $L_p$. In addition, embedding theorems with inversion are proved in the periodic case for generalized Lipschitz classes in $L_p$. Bibliography: 9 titles.
@article{SM_1972_17_2_a8,
     author = {A. P. Terekhin},
     title = {Functions of bounded $q$-integral $p$-variation and imbedding theorems},
     journal = {Sbornik. Mathematics},
     pages = {279--288},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/}
}
TY  - JOUR
AU  - A. P. Terekhin
TI  - Functions of bounded $q$-integral $p$-variation and imbedding theorems
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 279
EP  - 288
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/
LA  - en
ID  - SM_1972_17_2_a8
ER  - 
%0 Journal Article
%A A. P. Terekhin
%T Functions of bounded $q$-integral $p$-variation and imbedding theorems
%J Sbornik. Mathematics
%D 1972
%P 279-288
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/
%G en
%F SM_1972_17_2_a8
A. P. Terekhin. Functions of bounded $q$-integral $p$-variation and imbedding theorems. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 279-288. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a8/