Convex operator functions
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 269-277
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi(x)$ be a convex downwards function, $A>0$ a selfadjoint operator in a Hilbert space $H$, $P$ an orthogonal projector in $H$; suppose $D_A\cap PH$ is dense in $PH$, and let $A_p$ be the Friedrichs extension of the operator $PAP$ defined on $D_A\cap PH$.
The inequality $\mathrm{Sp}\varphi(A_p)\leqslant\mathrm{Sp}\varphi(PAP)$ is proved. An estimate for the Jacobi $\theta$-function and a distant generalization of the Szasz inequality are obtained as corollaries.
Bibliography: 3 titles.
@article{SM_1972_17_2_a7,
author = {F. A. Berezin},
title = {Convex operator functions},
journal = {Sbornik. Mathematics},
pages = {269--277},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a7/}
}
F. A. Berezin. Convex operator functions. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 269-277. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a7/