On the correctness of boundary value problems in the mechanics of continuous media
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 257-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the properties of vector analogs of the Sobolev spaces, $\mathbf W_p^1$, which appear in the study of various models of continuous media. Korn's inequality, proved in the paper, makes it possible to reduce the problem of compactness of the imbedding operators in these spaces to the scalar case and, consequently, to apply the scalar imbedding theorem of S. L. Sobolev. Heretofore, Korn's inequality in the general form was known only for $p=2$. Bibliography: 18 titles.
@article{SM_1972_17_2_a6,
     author = {P. P. Mosolov and V. P. Myasnikov},
     title = {On the correctness of boundary value problems in the mechanics of continuous media},
     journal = {Sbornik. Mathematics},
     pages = {257--268},
     year = {1972},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a6/}
}
TY  - JOUR
AU  - P. P. Mosolov
AU  - V. P. Myasnikov
TI  - On the correctness of boundary value problems in the mechanics of continuous media
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 257
EP  - 268
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a6/
LA  - en
ID  - SM_1972_17_2_a6
ER  - 
%0 Journal Article
%A P. P. Mosolov
%A V. P. Myasnikov
%T On the correctness of boundary value problems in the mechanics of continuous media
%J Sbornik. Mathematics
%D 1972
%P 257-268
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a6/
%G en
%F SM_1972_17_2_a6
P. P. Mosolov; V. P. Myasnikov. On the correctness of boundary value problems in the mechanics of continuous media. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 257-268. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a6/

[1] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, t. 2, Gostekhizdat, Moskva, 1945

[2] K. Friedrichs, “On the boundary-value problems of the theory of elasticity and Korn's inequality”, Ann Math, 48:2 (1947), 441–471 | DOI | MR | Zbl

[3] P. P. Mosolov, V. P. Myasnikov, Variatsionnye metody v teorii techenii zhestko-vyazko-plasticheskikh sred, MGU, Moskva, 1971

[4] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, Leningrad, 1950

[5] L. I. Sedov, Mekhanika sploshnykh sred, t. I, Nauka, Moskva, 1969

[6] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, Moskva, 1962 | Zbl

[7] A. P. Calderon and A. Zigmund, “On singular integrals”, Amer. J. Math., 78:2 (1956), 289–809 | DOI | MR

[8] D. M. Eidus, “O smeshannoi zadache teorii uprugosti”, DAN SSSR, 76:2 (1951), 181–184 | MR

[9] S. G. Mikhlin, Problema minimuma kvadratichnogo funktsionala, Gostekhizdat, Moskva, 1952

[10] A. L. Krylov, “Obosnovanie printsipa Dirikhle dlya pervoi kraevoi zadachi nelineinoi teorii uprugosti”, DAN SSSR, 146:1 (1962), 54–57 | Zbl

[11] J. Gobert, “Une inégalité foundamentelle de la theorie de lélasticité”, Bull. Soc. r. sci. Liege, 31:3–4 (1962), 182–191 | MR | Zbl

[12] S. Componato, “Proprieta di taluni spazi di Banach connessi con la theoria dell'elasticita”, Ann. Scuola Norm. Super. Pisa, ser. 3, 16:2 (1962), 116–143

[13] I. B. Simonenko, “Ogranichennost singulyarnykh operatorov v prostranstvakh Orlicha”, DAN SSSR, 130:5 (1960), 984–987 | MR | Zbl

[14] S. Koizumi, “On the singular integrals. I”, Proc. Japan Acad., 34:4 (1958), 89–94 | DOI | MR

[15] S. Koizumi, “On the singular integrals. II”, Proc. Japan. Acad., 34:5 (1958), 63–68 | DOI

[16] B. S. Mityagin, “O vtoroi smeshannoi proizvodnoi”, DAN SSSR, 123:4 (1958), 606–609 | MR | Zbl

[17] K. Leeuw and H. Mirkil, “A priori estimates for differential operators in $L_\infty$ norm”, Illinois J. Math., 8:1 (1964), 112–124 | MR | Zbl

[18] D. Ornstein, “A non-inequality for differential operators in the $L_1$ norm”, Arch. Rat. Mech. Anal., 11:1 (1962), 40–49 | DOI | MR | Zbl