On~rings with a~discrete divisor class group
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 228-236
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the conjecture: $C(A)=C(A[[T]])$ for a local ring $A$ if and only if the divisor class group of the strict henselization $C(^\mathrm{sh}A)$ has a finite number of generators. This conjecture is proved in two cases: 1) $A$ has characteristic $0$, 2) $A$ is an equicharacteristic ring of an isolated singularity.
Bibliography: 15 titles.
@article{SM_1972_17_2_a4,
author = {V. I. Danilov},
title = {On~rings with a~discrete divisor class group},
journal = {Sbornik. Mathematics},
pages = {228--236},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/}
}
V. I. Danilov. On~rings with a~discrete divisor class group. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 228-236. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/