On~rings with a~discrete divisor class group
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 228-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the conjecture: $C(A)=C(A[[T]])$ for a local ring $A$ if and only if the divisor class group of the strict henselization $C(^\mathrm{sh}A)$ has a finite number of generators. This conjecture is proved in two cases: 1) $A$ has characteristic $0$, 2) $A$ is an equicharacteristic ring of an isolated singularity. Bibliography: 15 titles.
@article{SM_1972_17_2_a4,
     author = {V. I. Danilov},
     title = {On~rings with a~discrete divisor class group},
     journal = {Sbornik. Mathematics},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/}
}
TY  - JOUR
AU  - V. I. Danilov
TI  - On~rings with a~discrete divisor class group
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 228
EP  - 236
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/
LA  - en
ID  - SM_1972_17_2_a4
ER  - 
%0 Journal Article
%A V. I. Danilov
%T On~rings with a~discrete divisor class group
%J Sbornik. Mathematics
%D 1972
%P 228-236
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/
%G en
%F SM_1972_17_2_a4
V. I. Danilov. On~rings with a~discrete divisor class group. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 228-236. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a4/