On~densely imbedded ideals of algebras
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 216-227
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper arose as a result of solution of a problem of finding necessary and sufficient conditions characterizing a pair of associative rings or algebras $A$, $B$, where $A$ is a densely imbedded ideal in $B$. It turns out that the methods by which one succeeds in obtaining this solution permit treatment of the even more general situation of the so-called distributive $\Omega$-semigroups, for which the corresponding $\Omega$-algebras are commutative. This situation, with $\Omega$ empty, includes the case of semigroups also.
Bibliography: 27 titles.
			
            
            
            
          
        
      @article{SM_1972_17_2_a3,
     author = {L. N. Shevrin},
     title = {On~densely imbedded ideals of algebras},
     journal = {Sbornik. Mathematics},
     pages = {216--227},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a3/}
}
                      
                      
                    L. N. Shevrin. On~densely imbedded ideals of algebras. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 216-227. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a3/
