The spectral sequence of a continuous mapping and coverings for Deheuvels homology
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analog is proved of the theorem of Leray on the spectral sequence of a continuous mapping, for the Deheuvels homology of a metric compactum with coefficients in a copresheaf of $R$-modules. The proof uses a functor constructed by the author, which assigns to an inverse spectrum a resolution acyclic with respect to the inverse limit functor. Bibliography: 3 titles.
@article{SM_1972_17_2_a2,
     author = {E. M. Beniaminov},
     title = {The spectral sequence of a~continuous mapping and coverings for {Deheuvels} homology},
     journal = {Sbornik. Mathematics},
     pages = {209--215},
     year = {1972},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/}
}
TY  - JOUR
AU  - E. M. Beniaminov
TI  - The spectral sequence of a continuous mapping and coverings for Deheuvels homology
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 209
EP  - 215
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/
LA  - en
ID  - SM_1972_17_2_a2
ER  - 
%0 Journal Article
%A E. M. Beniaminov
%T The spectral sequence of a continuous mapping and coverings for Deheuvels homology
%J Sbornik. Mathematics
%D 1972
%P 209-215
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/
%G en
%F SM_1972_17_2_a2
E. M. Beniaminov. The spectral sequence of a continuous mapping and coverings for Deheuvels homology. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/

[1] E. M. Veniaminov, “O gomologiyakh Deevelya metricheskikh kompaktov”, DAN SSSR, 195:3 (1970), 523–525

[2] R. Deheuvels, “Homologie des ensembles ordonnés et des espaces topologiques”, Bull. Soc. Math. France, 90:2 (1962), 261–321 | MR | Zbl

[3] J-E. Roos, “Sur les foncteurs derives de lim. Application”, C. r. Acad. Sci., 252:24 (1961), 3702–3704 | MR | Zbl