The spectral sequence of a~continuous mapping and coverings for Deheuvels homology
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An analog is proved of the theorem of Leray on the spectral sequence of a continuous mapping, for the Deheuvels homology of a metric compactum with coefficients in a copresheaf of $R$-modules. The proof uses a functor constructed by the author, which assigns to an inverse spectrum a resolution acyclic with respect to the inverse limit functor.
Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1972_17_2_a2,
     author = {E. M. Beniaminov},
     title = {The spectral sequence of a~continuous mapping and coverings for {Deheuvels} homology},
     journal = {Sbornik. Mathematics},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/}
}
                      
                      
                    E. M. Beniaminov. The spectral sequence of a~continuous mapping and coverings for Deheuvels homology. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/
