The spectral sequence of a continuous mapping and coverings for Deheuvels homology
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215
Cet article a éte moissonné depuis la source Math-Net.Ru
An analog is proved of the theorem of Leray on the spectral sequence of a continuous mapping, for the Deheuvels homology of a metric compactum with coefficients in a copresheaf of $R$-modules. The proof uses a functor constructed by the author, which assigns to an inverse spectrum a resolution acyclic with respect to the inverse limit functor. Bibliography: 3 titles.
@article{SM_1972_17_2_a2,
author = {E. M. Beniaminov},
title = {The spectral sequence of a~continuous mapping and coverings for {Deheuvels} homology},
journal = {Sbornik. Mathematics},
pages = {209--215},
year = {1972},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/}
}
E. M. Beniaminov. The spectral sequence of a continuous mapping and coverings for Deheuvels homology. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a2/
[1] E. M. Veniaminov, “O gomologiyakh Deevelya metricheskikh kompaktov”, DAN SSSR, 195:3 (1970), 523–525
[2] R. Deheuvels, “Homologie des ensembles ordonnés et des espaces topologiques”, Bull. Soc. Math. France, 90:2 (1962), 261–321 | MR | Zbl
[3] J-E. Roos, “Sur les foncteurs derives de lim. Application”, C. r. Acad. Sci., 252:24 (1961), 3702–3704 | MR | Zbl