On Darboux surfaces in a Riemannian space
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 183-189
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of surfaces is defined in Riemannian space $V_3$ for which the system of equations for infinitesimal bending reduces to the simplest form. Certain properties of such surfaces are established. Bibliography: 4 titles.
@article{SM_1972_17_2_a0,
author = {V. T. Fomenko},
title = {On~Darboux surfaces in {a~Riemannian} space},
journal = {Sbornik. Mathematics},
pages = {183--189},
year = {1972},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/}
}
V. T. Fomenko. On Darboux surfaces in a Riemannian space. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/
[1] I. N. Vekua, Obobschennye analiticheskie funktsii, Fizmatgiz, Moskva, 1959 | MR
[2] V. F. Kagan, Teoriya poverkhnostei, ch. 2, OGIZ, Moskva–Leningrad, 1948 | Zbl
[3] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, Moskva, 1969 | MR
[4] G. F. Mordashova, “Analog poverkhnostei vtorogo poryadka v trekhmernom rimanovom prostranstve”, Uchenye zapiski Gork. un-ta, vyp. 80, ch. II, Gorkii, 1967, 70–77