On~Darboux surfaces in a~Riemannian space
Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 183-189

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of surfaces is defined in Riemannian space $V_3$ for which the system of equations for infinitesimal bending reduces to the simplest form. Certain properties of such surfaces are established. Bibliography: 4 titles.
@article{SM_1972_17_2_a0,
     author = {V. T. Fomenko},
     title = {On~Darboux surfaces in {a~Riemannian} space},
     journal = {Sbornik. Mathematics},
     pages = {183--189},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/}
}
TY  - JOUR
AU  - V. T. Fomenko
TI  - On~Darboux surfaces in a~Riemannian space
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 183
EP  - 189
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/
LA  - en
ID  - SM_1972_17_2_a0
ER  - 
%0 Journal Article
%A V. T. Fomenko
%T On~Darboux surfaces in a~Riemannian space
%J Sbornik. Mathematics
%D 1972
%P 183-189
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/
%G en
%F SM_1972_17_2_a0
V. T. Fomenko. On~Darboux surfaces in a~Riemannian space. Sbornik. Mathematics, Tome 17 (1972) no. 2, pp. 183-189. http://geodesic.mathdoc.fr/item/SM_1972_17_2_a0/