Study of convergence in a~rectification problem
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 119-137

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of “rectification” is considered of the plane motion of a polygonal line $\overline A(t)$ specified by its $n+1$ vertices. The motion is defined by an operator $\mathfrak A$ in $(2n+2)$-dimensional space whose infinite repetition must rectify the polygonal line. The rules of motion of the vertices are local and homogeneous for all the internal vertices of the polygonal line. The behavior of $\overline A(t)$ in the neighborhood of stationary points is studied, and global convergence to these points from certain initial states is proved for $t\to\infty$. Figures: 4. Bibliography: 2 titles.
@article{SM_1972_17_1_a5,
     author = {O. N. Stavskaya},
     title = {Study of convergence in a~rectification problem},
     journal = {Sbornik. Mathematics},
     pages = {119--137},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a5/}
}
TY  - JOUR
AU  - O. N. Stavskaya
TI  - Study of convergence in a~rectification problem
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 119
EP  - 137
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a5/
LA  - en
ID  - SM_1972_17_1_a5
ER  - 
%0 Journal Article
%A O. N. Stavskaya
%T Study of convergence in a~rectification problem
%J Sbornik. Mathematics
%D 1972
%P 119-137
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_1_a5/
%G en
%F SM_1972_17_1_a5
O. N. Stavskaya. Study of convergence in a~rectification problem. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 119-137. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a5/