Rate of convergence in the ``circle formation'' problem
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 89-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider transformations obtained from local homogeneous rules of motion of polygons in the plane for which regular polygons are stationary (the so-called “circle formation” problem). These transformations are studied for initial states that are close to regular polygons. A method of determination of the rate of convergence to regular polygons is presented; on this basis we obtain estimates of the highest rate of convergence. Figures: 1. Bibliography: 4 titles.
@article{SM_1972_17_1_a4,
     author = {A. M. Leontovich},
     title = {Rate of convergence in the ``circle formation'' problem},
     journal = {Sbornik. Mathematics},
     pages = {89--118},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/}
}
TY  - JOUR
AU  - A. M. Leontovich
TI  - Rate of convergence in the ``circle formation'' problem
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 89
EP  - 118
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/
LA  - en
ID  - SM_1972_17_1_a4
ER  - 
%0 Journal Article
%A A. M. Leontovich
%T Rate of convergence in the ``circle formation'' problem
%J Sbornik. Mathematics
%D 1972
%P 89-118
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/
%G en
%F SM_1972_17_1_a4
A. M. Leontovich. Rate of convergence in the ``circle formation'' problem. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 89-118. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/