Rate of convergence in the “circle formation” problem
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 89-118
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider transformations obtained from local homogeneous rules of motion of polygons in the plane for which regular polygons are stationary (the so-called “circle formation” problem). These transformations are studied for initial states that are close to regular polygons. A method of determination of the rate of convergence to regular polygons is presented; on this basis we obtain estimates of the highest rate of convergence. Figures: 1. Bibliography: 4 titles.
@article{SM_1972_17_1_a4,
author = {A. M. Leontovich},
title = {Rate of convergence in the {\textquotedblleft}circle formation{\textquotedblright} problem},
journal = {Sbornik. Mathematics},
pages = {89--118},
year = {1972},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/}
}
A. M. Leontovich. Rate of convergence in the “circle formation” problem. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 89-118. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a4/
[1] A. M. Leontovich, I. I. Pyatetskii-Shapiro, O. N. Stavskaya, “Zadacha okruzhivaniya v matematicheskoi modeli formoobrazovaniya”, Avtomatika i telemekhanika, 1971, no. 2, 100–110 | MR | Zbl
[2] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, Uspekhi matem. nauk, XXV:1(151) (1970), 113–185 | MR
[3] F. Khartman, Obyknovennye differentsialnye uravneniya (glava IX), Mir, Moskva, 1970 | MR | Zbl
[4] A. M. Leontovich, I. I. Pyatetskii-Shapiro, O. N. Stavskaya, “Nekotorye matematicheskie zadachi, svyazannye s formoobrazovaniem”, Avtomatika i telemekhanika, 1970, no. 4, 94–107 | MR | Zbl