Estimates of the volume of a region in a Riemannian space
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 61-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In an $n$-dimensional Riemannian space we consider a compact space with nonnegative curvature and with a strictly convex boundary. We let $V$ be the volume of this region, $S$ the area (the $(n-1)$-dimensional volume) of its boundary, $k_1\geqslant0$ the lower bound of the two-dimensional curvatures and $r$ the radius of an inscribed ball. We prove the estimate $V\geqslant\frac1nSr$. In the case $k_1>0$ we establish that $r<\pi/\sqrt{k_1}$, and that one has the more precise estimate $$ V\geqslant\frac S{\sin^{n-1}r\sqrt{k_1}}\int_0^r{\sin^{n-1}t\sqrt{k_1}\,dt}. $$ In both cases equality holds if the region considered is a ball in a space of constant curvature $k_1\geqslant0$. Figures: 5. Bibliography: 12 titles.
@article{SM_1972_17_1_a3,
     author = {B. V. Dekster},
     title = {Estimates of the volume of a~region in {a~Riemannian} space},
     journal = {Sbornik. Mathematics},
     pages = {61--87},
     year = {1972},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a3/}
}
TY  - JOUR
AU  - B. V. Dekster
TI  - Estimates of the volume of a region in a Riemannian space
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 61
EP  - 87
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a3/
LA  - en
ID  - SM_1972_17_1_a3
ER  - 
%0 Journal Article
%A B. V. Dekster
%T Estimates of the volume of a region in a Riemannian space
%J Sbornik. Mathematics
%D 1972
%P 61-87
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_17_1_a3/
%G en
%F SM_1972_17_1_a3
B. V. Dekster. Estimates of the volume of a region in a Riemannian space. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 61-87. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a3/

[1] B. V. Dekster, “Nekotorye integralnye otsenki dlya trekhmernykh razvertok”, Matem. sb., 81(123) (1970), 256–278 | MR | Zbl

[2] A. D. Aleksandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhizdat, Moskva, 1943

[3] V. A. Toponogov, “Rimanovy prostranstva krivizny, ogranichennoi snizu”, Uspekhi matem. nauk, XIV:1(85) (1959), 87–130 | MR

[4] E. Kartan, Geometriya rimanovykh prostranstv, ONTI, Moskva, 1936

[5] Zh. de Ram, Differentsiruemye mnogoobraziya, IL, Moskva, 1956

[6] D. Gromoll, W. Klingenberg, W. Meyer, “Riemannsche Geometrie im Grofien”, Lecture Notes in Math., 55, Springer-Verlag, Berlin–Heidelberg–New York, 1968 | MR

[7] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, t. III, Fizmatgiz, Moskva–Leningrad, 1960 | Zbl

[8] Dzh. Milnor, Teoriya Morsa, Mir, Moskva, 1965 | MR

[9] S. Saks, Teoriya integrala, IL, Moskva, 1949

[10] E. Kamke, Integral Lebega–Stiltesa, Fizmatgiz, Moskva, 1959

[11] H. Blaine Lawson Jr., “The unknottedness of minimal embeddings”, Invent. Math., 11, no. 3, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[12] P. L. Bishop, P. Dzh. Krittenden, Geometriya mnogoobrazii, Mir, Moskva, 1967 | MR | Zbl