@article{SM_1972_17_1_a2,
author = {E. Ya. Khruslov},
title = {The method of orthogonal projections and the {Dirichlet} problem in domains with a~fine-grained boundary},
journal = {Sbornik. Mathematics},
pages = {37--59},
year = {1972},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/}
}
E. Ya. Khruslov. The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/
[1] H. Weyl, “Method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 417–444 | DOI | MR
[2] M. I. Vishik, “Metod ortogonalnykh i pryamykh razlozhenii v teorii ellipticheskikh differentsialnykh razlozhenii”, Matem. sb., 25(67) (1949), 189–234 | Zbl
[3] K. Moren, Metody gilbertova prostranstva, Mir, Moskva, 1965 | MR
[4] S. G. Mikhlin, Problema minimuma kvadratichnogo funktsionala, Gostekhizdat, Moskva–Leningrad, 1952
[5] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, 1950
[6] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, Moskva, 1962 | MR
[7] V. G. Mazya, “Poligarmonicheskaya emkost v teorii pervoi kraevoi zadachi”, Sib. matem. zh., VI:1 (1965), 127–148
[8] Yu. N. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR