The method of orthogonal projections and the Dirichlet problem in domains with a~fine-grained boundary
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 37-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet problem is considered for an elliptic selfadjoint operator $L$ in a domain $D^{(s)}=D\setminus\bigcup_{i=1}^s F_i^{(s)}$, where $D$ is a bounded domain in $R_n$ and the $F_i^{(s)}$ are nonintersecting closed sets (grains). It is shown that, if the grain diameters tend to zero, and the number $s$ of grains tends to infinity, the solution of the problem reduces, under certain conditions, to the solution of another boundary value problem in the simpler domain $D$.
Bibliography: 8 titles.
@article{SM_1972_17_1_a2,
author = {E. Ya. Khruslov},
title = {The method of orthogonal projections and the {Dirichlet} problem in domains with a~fine-grained boundary},
journal = {Sbornik. Mathematics},
pages = {37--59},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/}
}
TY - JOUR AU - E. Ya. Khruslov TI - The method of orthogonal projections and the Dirichlet problem in domains with a~fine-grained boundary JO - Sbornik. Mathematics PY - 1972 SP - 37 EP - 59 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/ LA - en ID - SM_1972_17_1_a2 ER -
E. Ya. Khruslov. The method of orthogonal projections and the Dirichlet problem in domains with a~fine-grained boundary. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/