The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 37-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem is considered for an elliptic selfadjoint operator $L$ in a domain $D^{(s)}=D\setminus\bigcup_{i=1}^s F_i^{(s)}$, where $D$ is a bounded domain in $R_n$ and the $F_i^{(s)}$ are nonintersecting closed sets (grains). It is shown that, if the grain diameters tend to zero, and the number $s$ of grains tends to infinity, the solution of the problem reduces, under certain conditions, to the solution of another boundary value problem in the simpler domain $D$. Bibliography: 8 titles.
@article{SM_1972_17_1_a2,
     author = {E. Ya. Khruslov},
     title = {The method of orthogonal projections and the {Dirichlet} problem in domains with a~fine-grained boundary},
     journal = {Sbornik. Mathematics},
     pages = {37--59},
     year = {1972},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/}
}
TY  - JOUR
AU  - E. Ya. Khruslov
TI  - The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 37
EP  - 59
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/
LA  - en
ID  - SM_1972_17_1_a2
ER  - 
%0 Journal Article
%A E. Ya. Khruslov
%T The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary
%J Sbornik. Mathematics
%D 1972
%P 37-59
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/
%G en
%F SM_1972_17_1_a2
E. Ya. Khruslov. The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 37-59. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a2/

[1] H. Weyl, “Method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 417–444 | DOI | MR

[2] M. I. Vishik, “Metod ortogonalnykh i pryamykh razlozhenii v teorii ellipticheskikh differentsialnykh razlozhenii”, Matem. sb., 25(67) (1949), 189–234 | Zbl

[3] K. Moren, Metody gilbertova prostranstva, Mir, Moskva, 1965 | MR

[4] S. G. Mikhlin, Problema minimuma kvadratichnogo funktsionala, Gostekhizdat, Moskva–Leningrad, 1952

[5] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, 1950

[6] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, Moskva, 1962 | MR

[7] V. G. Mazya, “Poligarmonicheskaya emkost v teorii pervoi kraevoi zadachi”, Sib. matem. zh., VI:1 (1965), 127–148

[8] Yu. N. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR