Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 30-36
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a smooth surface of fourth degree in $\mathbf P^4_k$, defined over a perfect field $k$, is not birationally isomorphic, over $k$, to the projective plane $\mathbf P^2_k$ if it is $k$-minimal.
Bibliography: 5 titles.
@article{SM_1972_17_1_a1,
author = {V. A. Iskovskikh},
title = {Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$},
journal = {Sbornik. Mathematics},
pages = {30--36},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/}
}
V. A. Iskovskikh. Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 30-36. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/