Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$
Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 30-36

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a smooth surface of fourth degree in $\mathbf P^4_k$, defined over a perfect field $k$, is not birationally isomorphic, over $k$, to the projective plane $\mathbf P^2_k$ if it is $k$-minimal. Bibliography: 5 titles.
@article{SM_1972_17_1_a1,
     author = {V. A. Iskovskikh},
     title = {Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$},
     journal = {Sbornik. Mathematics},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 30
EP  - 36
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/
LA  - en
ID  - SM_1972_17_1_a1
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$
%J Sbornik. Mathematics
%D 1972
%P 30-36
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/
%G en
%F SM_1972_17_1_a1
V. A. Iskovskikh. Birational properties of a~surface of degree~4 in~$\mathbf P^4_k$. Sbornik. Mathematics, Tome 17 (1972) no. 1, pp. 30-36. http://geodesic.mathdoc.fr/item/SM_1972_17_1_a1/