On the cohomology of compact complex homogeneous spaces. II
Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 607-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider complex homogeneous spaces for which the fiber of its Tits fibration is a complex torus. We compute the cohomology of vector bundles (i.e. of sheaves of germs of holomorphic sections) over such spaces. Bibliography: 11 titles.
@article{SM_1972_16_4_a5,
     author = {D. N. Akhiezer},
     title = {On~the cohomology of compact complex homogeneous {spaces.~II}},
     journal = {Sbornik. Mathematics},
     pages = {607--614},
     year = {1972},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_4_a5/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - On the cohomology of compact complex homogeneous spaces. II
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 607
EP  - 614
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_4_a5/
LA  - en
ID  - SM_1972_16_4_a5
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T On the cohomology of compact complex homogeneous spaces. II
%J Sbornik. Mathematics
%D 1972
%P 607-614
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1972_16_4_a5/
%G en
%F SM_1972_16_4_a5
D. N. Akhiezer. On the cohomology of compact complex homogeneous spaces. II. Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 607-614. http://geodesic.mathdoc.fr/item/SM_1972_16_4_a5/

[1] J. Tits, “Espaces homogènes complexes compacts”, Comm. Math. Helv., 37:2 (1962), 111–120 | DOI | MR | Zbl

[2] R. Bott, “Homogeneous vector budles”, Ann. Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[3] P. A. Griffiths, “Some geometric and analytic properties of homogeneous complex manifolds. I”, Acta Math., 110:1–2 (1963), 115–155 | DOI | MR | Zbl

[4] D. H. Axiezer, “O kogomologiyakh kompaktnykh kompleksnykh odnorodnykh prostranstv”, Matem. sb., 84(126) (1971), 290–300

[5] Y. Matsushima, “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlerienne”, Nagoya Math. J., 11 (1957), 145–150 | MR | Zbl

[6] A. L. Onischik, “Otnosheniya vklyucheniya mezhdu tranzitivnymi kompaktnymi gruppami preobrazovanii”, Trudy Mosk. matem. ob-va, XI (1962), 199–242

[7] M. Ise, “On the geometry of Hopf manifolds”, Osaka Math. J., 12:2 (I960), 387–402 | MR | Zbl

[8] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, 1966 | MR

[9] A. Blanchard, “Sur les variétés analytiques complexes”, Ann. scient. Ecole Norm. Super., 73:1 (1956), 157–202 | MR | Zbl

[10] R. Hermann, “Compactification of homogeneous spaces. I”, J. Math. and Mech., 14:4 (1965), 655–678 | MR | Zbl

[11] H. C. Wang, “Closed manifolds with homogeneous complex structure”, Amer. J. Math., 76:1 (1954), 1–32 | DOI | MR | Zbl