On the Cauchy problem for composite systems of nonlinear differential equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 517-544
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the solvability of the Cauchy problem in a space of smooth functions is demonstrated for hyperbolic-parabolic composite systems of nonlinear equations which include a broad class of equations of mathematical physics, in particular, symmetric systems of first order and parabolic systems of second order. Cauchy problems for the equations of the dynamics of a viscous compressible fluid and for the equations of gas dynamics are solved as examples.
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1972_16_4_a2,
     author = {A. I. Vol'pert and S. I. Khudyaev},
     title = {On the {Cauchy} problem for composite systems of nonlinear differential equations},
     journal = {Sbornik. Mathematics},
     pages = {517--544},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_4_a2/}
}
                      
                      
                    TY - JOUR AU - A. I. Vol'pert AU - S. I. Khudyaev TI - On the Cauchy problem for composite systems of nonlinear differential equations JO - Sbornik. Mathematics PY - 1972 SP - 517 EP - 544 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_16_4_a2/ LA - en ID - SM_1972_16_4_a2 ER -
A. I. Vol'pert; S. I. Khudyaev. On the Cauchy problem for composite systems of nonlinear differential equations. Sbornik. Mathematics, Tome 16 (1972) no. 4, pp. 517-544. http://geodesic.mathdoc.fr/item/SM_1972_16_4_a2/
