Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. I. The case of finite $\mathfrak N$
Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 408-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Linear differential operators $R$ of order $n$ from $C^n[0,1]$ into $C[0,1]$, i.e. without boundary conditions, are discussed. With $\lambda$ complex, let $Z^R_\lambda$ denote the linear space of all solutions $z(x)\in C^n[0,1]$ of the homogeneous equation $Rz=\lambda z$. We use die operator $R$ and certain of its spectral properties to obtain an operator $L$ analogous to $R$. Our main result is to obtain expressions defining a linear mapping $T_\lambda\colon Z_\lambda^R\to Z_\lambda^L$ (Theorem 2.6). The linear mappings $T_\lambda$ are meromorphically dependent on $\lambda$. Bibliography: 2 titles.
@article{SM_1972_16_3_a6,
     author = {Z. I. Leibenzon},
     title = {Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. {I.~The} case of finite~$\mathfrak N$},
     journal = {Sbornik. Mathematics},
     pages = {408--428},
     year = {1972},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_3_a6/}
}
TY  - JOUR
AU  - Z. I. Leibenzon
TI  - Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. I. The case of finite $\mathfrak N$
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 408
EP  - 428
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_3_a6/
LA  - en
ID  - SM_1972_16_3_a6
ER  - 
%0 Journal Article
%A Z. I. Leibenzon
%T Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. I. The case of finite $\mathfrak N$
%J Sbornik. Mathematics
%D 1972
%P 408-428
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1972_16_3_a6/
%G en
%F SM_1972_16_3_a6
Z. I. Leibenzon. Algebraic-differential transformations of linear differential operators of arbitrary order and their spectral properties applicable to the inverse problem. I. The case of finite $\mathfrak N$. Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 408-428. http://geodesic.mathdoc.fr/item/SM_1972_16_3_a6/

[1] Z. L. Leibenzon, “Obratnaya zadacha spektralnogo analiza obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Trudy Mosk. matem. ob-va, XV (1966), 70–144 | MR

[2] Z. L. Leibenzon, “Edinstvennost resheniya obratnoi zadachi dlya obyknovennykh differentsialnykh operatorov poryadka $n\geqslant2$ i preobrazovaniya takikh operatorov”, DAN SSSR, 142:3 (1962), 534–537 | MR | Zbl