Invariant subrings of induced rings
Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 381-388

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi(G_{k_\mathfrak p},P_{\Theta,k_\mathfrak p},\varphi,K)$ be the ring induced by the homorphism $\varphi\colon P_{\Theta,k_\mathfrak p}\to \operatorname{Aut}K$, where $G_{k_\mathfrak p}$ is the Chevalley group over the field $k_\mathfrak p$ of $\mathfrak p$-adic numbers and $P_{\Theta,k_\mathfrak p}$ is a parabolic sybgroup. In this note we characterize a class of subrings of this ring which are invariant relative to translations by elements of the group $G_{k_\mathfrak p}$. Bibliography: 4 titles.
@article{SM_1972_16_3_a4,
     author = {B. Kh. Kirshtein},
     title = {Invariant subrings of induced rings},
     journal = {Sbornik. Mathematics},
     pages = {381--388},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_3_a4/}
}
TY  - JOUR
AU  - B. Kh. Kirshtein
TI  - Invariant subrings of induced rings
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 381
EP  - 388
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_3_a4/
LA  - en
ID  - SM_1972_16_3_a4
ER  - 
%0 Journal Article
%A B. Kh. Kirshtein
%T Invariant subrings of induced rings
%J Sbornik. Mathematics
%D 1972
%P 381-388
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_3_a4/
%G en
%F SM_1972_16_3_a4
B. Kh. Kirshtein. Invariant subrings of induced rings. Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 381-388. http://geodesic.mathdoc.fr/item/SM_1972_16_3_a4/