Nonlinear equations of Hammerstein type with potential and monotone operators in Banach spaces
Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 333-347

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an existence and uniqueness theorem for solutions of equations of Hammerstein type \begin{equation} x=SF(x) \end{equation} in Banach spaces. The main difference between this study and previous ones is to be found in the assumptions that $S$ is a closed operator from one Banach space into another, and that bounds on $F$ are imposed only on certain subsets of the space in question. The proof of the basic results requires an extension of the nonlinear mappings; we do not assume continuity of these mappings. The concept of a generalized solution is introduced, and sufficient conditions are found for it to be unique, and to coincide with an exact solution. Bibliography: 11 titles.
@article{SM_1972_16_3_a1,
     author = {M. M. Vainberg and I. M. Lavrent'ev},
     title = {Nonlinear equations of {Hammerstein} type with potential and monotone operators in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {333--347},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_3_a1/}
}
TY  - JOUR
AU  - M. M. Vainberg
AU  - I. M. Lavrent'ev
TI  - Nonlinear equations of Hammerstein type with potential and monotone operators in Banach spaces
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 333
EP  - 347
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_3_a1/
LA  - en
ID  - SM_1972_16_3_a1
ER  - 
%0 Journal Article
%A M. M. Vainberg
%A I. M. Lavrent'ev
%T Nonlinear equations of Hammerstein type with potential and monotone operators in Banach spaces
%J Sbornik. Mathematics
%D 1972
%P 333-347
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_3_a1/
%G en
%F SM_1972_16_3_a1
M. M. Vainberg; I. M. Lavrent'ev. Nonlinear equations of Hammerstein type with potential and monotone operators in Banach spaces. Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 333-347. http://geodesic.mathdoc.fr/item/SM_1972_16_3_a1/