On some noncoercive nonlinear equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 323-332
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper nonlinear equations $A(u)=h$ are studied, where the operator does not necessarily satisfy the well-known condition of coerciveness. With the equation $A(u)=h$, which is in general not solvable for an arbitrary right side $h$, we associate a certain equation of the form $B^*A(u)=h$, which is always solvable. Then the original equation $A(u)=h$ is solvable up to $\operatorname{Ker}B^*$. This gives a description of the domain of values of the original operator $A(u)$.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1972_16_3_a0,
     author = {Yu. A. Dubinskii},
     title = {On some noncoercive nonlinear equations},
     journal = {Sbornik. Mathematics},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_3_a0/}
}
                      
                      
                    Yu. A. Dubinskii. On some noncoercive nonlinear equations. Sbornik. Mathematics, Tome 16 (1972) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/SM_1972_16_3_a0/
