Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 265-285

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the modulus of continuity of functions in the $L_p$ metric $(1\leqslant p\nobreak\infty)$ is estimated through its best approximations in this metric by Haar and Walsh polynomials. Besides, estimates of best approximations of functions by Haar and Walsh polynomials in the $L_q$ metric are obtained by the same approximations in the $L_p$ metric $(1\leqslant p$. In the last case, the results are analogous to those which were proved for approximations by trigonometric polynomials by P. L. Ul'yanov and also by S. B. Stechkin and A. A. Konyushkov. Bibliography: 26 titles.
@article{SM_1972_16_2_a8,
     author = {B. I. Golubov},
     title = {Best approximations of functions in the $L_p$ metric by {Haar} and {Walsh} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {265--285},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a8/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 265
EP  - 285
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a8/
LA  - en
ID  - SM_1972_16_2_a8
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials
%J Sbornik. Mathematics
%D 1972
%P 265-285
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a8/
%G en
%F SM_1972_16_2_a8
B. I. Golubov. Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 265-285. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a8/