Linkings, two-sheeted branched coverings and braids
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 223-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every closed connected orientable three-dimensional $pl$-manifold of genus not greater than 2 is $pl$-homeomorphic to a two-sheeted branched covering of the sphere $S^3$. An analogous result is established for fibrations over $S^1$. An example is constructed of nonhomeomorphic linkings with homeomorphic two-sheeted branched coverings. Figures: 8. Bibliography: 11 titles.
@article{SM_1972_16_2_a5,
     author = {O. Ya. Viro},
     title = {Linkings, two-sheeted branched coverings and braids},
     journal = {Sbornik. Mathematics},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/}
}
TY  - JOUR
AU  - O. Ya. Viro
TI  - Linkings, two-sheeted branched coverings and braids
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 223
EP  - 236
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/
LA  - en
ID  - SM_1972_16_2_a5
ER  - 
%0 Journal Article
%A O. Ya. Viro
%T Linkings, two-sheeted branched coverings and braids
%J Sbornik. Mathematics
%D 1972
%P 223-236
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/
%G en
%F SM_1972_16_2_a5
O. Ya. Viro. Linkings, two-sheeted branched coverings and braids. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/