Linkings, two-sheeted branched coverings and braids
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 223-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that every closed connected orientable three-dimensional $pl$-manifold of genus not greater than 2 is $pl$-homeomorphic to a two-sheeted branched covering of the sphere $S^3$. An analogous result is established for fibrations over $S^1$. An example is constructed of nonhomeomorphic linkings with homeomorphic two-sheeted branched coverings. Figures: 8. Bibliography: 11 titles.
@article{SM_1972_16_2_a5,
     author = {O. Ya. Viro},
     title = {Linkings, two-sheeted branched coverings and braids},
     journal = {Sbornik. Mathematics},
     pages = {223--236},
     year = {1972},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/}
}
TY  - JOUR
AU  - O. Ya. Viro
TI  - Linkings, two-sheeted branched coverings and braids
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 223
EP  - 236
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/
LA  - en
ID  - SM_1972_16_2_a5
ER  - 
%0 Journal Article
%A O. Ya. Viro
%T Linkings, two-sheeted branched coverings and braids
%J Sbornik. Mathematics
%D 1972
%P 223-236
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/
%G en
%F SM_1972_16_2_a5
O. Ya. Viro. Linkings, two-sheeted branched coverings and braids. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a5/

[1] J. W. Alexander, “On the deformation of an $n$-cell”, Proc. Nat. Acad. Sci. USA, 9 (1923), 406–407 | DOI | Zbl

[2] F. Bergau, J. Mennicke, “Uber tooologische Abbildungen der Brezelflache vom Geschlecht $2$”, Math. Z., 74 (1960), 414–435 | DOI | MR | Zbl

[3] J. S. Birman, “Automorphisms of the fundamental group of a closed orientable $2$-manifold”, Proc. Amer. Math. Soc., 21 (1969), 351–354 | DOI | MR | Zbl

[4] J. S. Birman, “Mapping class groups and their relationship to braid groups”, Comm. Pure Appl. Math., 22 (1969), 213–238 | DOI | MR | Zbl

[5] E. Fadell, J. van Buskirk, “The braid groups of $E^2$ and $S^2$”, Duke Math. J., 29 (1962), 243–258 | DOI | MR

[6] R. H. Fox, “Covering spaces with singularities”, Leischetz Simposium, Princeton Math. Ser., 12, 1957, 243–257 | MR | Zbl

[7] R. H. Fox, L. Neuwirth, “The braid groups”, Math. Scand., 10 (1962), 119–126 | MR | Zbl

[8] W. B. R. Lickorish, “A finite set of generators for the homeotopy group of a $2$-manifold,”, Proc. Cambridge Philos. Soc., 60 (1964), 769–778 | DOI | MR | Zbl

[9] K. Reidemeister, Knotentheorie, Ergebnisse der Math. und ihrer Grenzgeb. 1, Berlin, 1932

[10] H. Schubert, “Knoten mit zwei Brucken”, Math. Z., 65 (1956), 133–170 | DOI | MR | Zbl

[11] H. Schubert, “Ober eine numerische Knoteninvariante”, Math. Z., 61 (1954), 245–288 | DOI | MR | Zbl