On the asymptotic expansion of Green's function for the heat conduction equation with small parameter
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 209-221
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is devoted to an investigation of the asymptotic expansion for $\alpha\to0$ of Green's function $\Gamma(x,t;x_0)$ for the first boundary value problem for the equation $\Gamma_t(x,t;x_0)=\alpha^2\Gamma_{xx}(x,t;x_0)$ for the case of a moving boundary. The asymptotic expansion is obtained by means of a modification of the method of heat potentials.
Bibliography: 5 titles.
@article{SM_1972_16_2_a4,
author = {G. A. Nesenenko},
title = {On the asymptotic expansion of {Green's} function for the heat conduction equation with small parameter},
journal = {Sbornik. Mathematics},
pages = {209--221},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/}
}
TY - JOUR AU - G. A. Nesenenko TI - On the asymptotic expansion of Green's function for the heat conduction equation with small parameter JO - Sbornik. Mathematics PY - 1972 SP - 209 EP - 221 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/ LA - en ID - SM_1972_16_2_a4 ER -
G. A. Nesenenko. On the asymptotic expansion of Green's function for the heat conduction equation with small parameter. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/