On the asymptotic expansion of Green's function for the heat conduction equation with small parameter
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 209-221

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to an investigation of the asymptotic expansion for $\alpha\to0$ of Green's function $\Gamma(x,t;x_0)$ for the first boundary value problem for the equation $\Gamma_t(x,t;x_0)=\alpha^2\Gamma_{xx}(x,t;x_0)$ for the case of a moving boundary. The asymptotic expansion is obtained by means of a modification of the method of heat potentials. Bibliography: 5 titles.
@article{SM_1972_16_2_a4,
     author = {G. A. Nesenenko},
     title = {On the asymptotic expansion of {Green's} function for the heat conduction equation with small parameter},
     journal = {Sbornik. Mathematics},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/}
}
TY  - JOUR
AU  - G. A. Nesenenko
TI  - On the asymptotic expansion of Green's function for the heat conduction equation with small parameter
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 209
EP  - 221
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/
LA  - en
ID  - SM_1972_16_2_a4
ER  - 
%0 Journal Article
%A G. A. Nesenenko
%T On the asymptotic expansion of Green's function for the heat conduction equation with small parameter
%J Sbornik. Mathematics
%D 1972
%P 209-221
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/
%G en
%F SM_1972_16_2_a4
G. A. Nesenenko. On the asymptotic expansion of Green's function for the heat conduction equation with small parameter. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a4/