Integral inequalities for conjugate harmonic functions of several variables
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 191-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We say that a harmonic vector $F(x,y)=(u,v_1,\ldots,v_n)$ belongs to the class $S_p$ $(p>0)$ in the half-space $R^n\times(0,+\infty)$ if for any $y_0>0$ there exists a constant $C(y_0,F)$ depending only on $F$ and $y_0$ such that $$ \int_{R^n}|F(x,y)|^p\,dx\leqslant C(y_0,F),\quad y\geqslant y_0. $$ Let $F\in S^p$ in $R^n\times(0,+\infty)$, $p>\frac{n-1}n$, $a>0$ and $\bigl\{\int_{R^n}|u(x,y)|^p\,dx\bigr\}^{1/p}\leqslant Cy^{-a}$ where $C=\mathrm{const}$. Then for $q\geqslant p$ we have $$ \biggl\{\int_{R^n}|F(x,y)|^p\,dx\biggr\}^{1/p}\leqslant BCy^{-a-n/p+n/q}, $$ where $B$ depends only on $n$, $p$ and $a$. Bibliography: 14 titles.
@article{SM_1972_16_2_a3,
     author = {A. A. Bonami},
     title = {Integral inequalities for conjugate harmonic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {191--208},
     year = {1972},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a3/}
}
TY  - JOUR
AU  - A. A. Bonami
TI  - Integral inequalities for conjugate harmonic functions of several variables
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 191
EP  - 208
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a3/
LA  - en
ID  - SM_1972_16_2_a3
ER  - 
%0 Journal Article
%A A. A. Bonami
%T Integral inequalities for conjugate harmonic functions of several variables
%J Sbornik. Mathematics
%D 1972
%P 191-208
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a3/
%G en
%F SM_1972_16_2_a3
A. A. Bonami. Integral inequalities for conjugate harmonic functions of several variables. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 191-208. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a3/

[1] M. Riesz, “Sur les fonctions conjuguees”, Math. Z., 27 (1927), 218–244 | DOI | MR | Zbl

[2] A. H. Kolmogorov, “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29

[3] G. H. Hardy, I. E. Littlewood, “Some properties of conjugate functions”, J. Reine und Angew. Math., 167 (1932), 405–423

[4] T. Kawata, “On analytic functions reqular in the half-plane”, Japan J. Math., 13:3 (1936), 421–430

[5] A. A. Bonami, “O sopryazhennykh garmonicheskikh funktsiyakh mnogikh peremennykh”, DAN SSSR, 192:4 (1970), 714–716 | MR | Zbl

[6] E. M. Stein, G. Weiss, “On the theory of harmonic functions of severel variables”, Acta Math., 103:1–2 (1960), 25–62 | DOI | MR | Zbl

[7] U. Kuran, “Classes of subharmonic functions in $R_n\times(0,+\infty)$”, Proc. London. Math. Soc., 16 (1966), 473–492 | DOI | MR | Zbl

[8] U. Kuran, “Extension to half-spaces of a theorem on conjugate functions”, Proc. London Math. Soc., 16 (1966), 590–598 | DOI | MR | Zbl

[9] Horváth, “Sur les fonctions conjuguées à plusieurs variables”, Proc. Kon. Ned. Acad. Wet., 56:1 (1953), 17–29 | MR | Zbl

[10] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, Gostekhizdat, Moskva–Leningrad, 1948

[11] A. P. Calderon, A. Zygmund, “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl

[12] M. Brelo, Osnovy klassicheskoi teorii potentsiala, Mir, Moskva, 1964 | MR | Zbl

[13] E. D. Solomentsev, “O klassakh funktsii, subgarmonicheskikh v poluprostranstve”, Vestnik MGU, seriya matem., 1959, no. 5, 73–91

[14] A. E. Gwilliam, “On Lipschitz conditions”, Proc. London Math. Soc., 40 (1935–1936), 354–364