On reflexive operator algebras
Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 181-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a weakly closed algebra of operators in a Hilbert space $H$, containing a maximal commutative $*$-subalgebra $\mathfrak A$ of the algebra of all bounded linear operators in $H$. One investigates the problem of the reflexivity of $S$ (an operator algebra is said to be reflexive if it contains every operator for which all invariant subspaces of the algebra are invariant). It is proved that each of the following two conditions is sufficient for the reflexivity of $S$: a) the lattice of the invariant subspaces of $S$ is symmetric; b) the algebra $\mathfrak A$ is generated by minimal projectors. One obtains other results too, referring to more general problems. Bibliography: 4 titles.
@article{SM_1972_16_2_a2,
     author = {V. S. Shulman},
     title = {On reflexive operator algebras},
     journal = {Sbornik. Mathematics},
     pages = {181--189},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_2_a2/}
}
TY  - JOUR
AU  - V. S. Shulman
TI  - On reflexive operator algebras
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 181
EP  - 189
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_2_a2/
LA  - en
ID  - SM_1972_16_2_a2
ER  - 
%0 Journal Article
%A V. S. Shulman
%T On reflexive operator algebras
%J Sbornik. Mathematics
%D 1972
%P 181-189
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1972_16_2_a2/
%G en
%F SM_1972_16_2_a2
V. S. Shulman. On reflexive operator algebras. Sbornik. Mathematics, Tome 16 (1972) no. 2, pp. 181-189. http://geodesic.mathdoc.fr/item/SM_1972_16_2_a2/