On a method for estimation from below of diameters of sets in Banach spaces
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 139-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a theorem is proved which generalizes a well-known theorem concerning diameters of spheres. The $n$-diameters of several classes of differentiable functions are calculated in the metric of $L_p$ with the help of this theorem. Bibliography: 9 titles.
@article{SM_1972_16_1_a9,
     author = {Yu. I. Makovoz},
     title = {On a~method for estimation from below of diameters of sets in {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {139--146},
     year = {1972},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a9/}
}
TY  - JOUR
AU  - Yu. I. Makovoz
TI  - On a method for estimation from below of diameters of sets in Banach spaces
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 139
EP  - 146
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_1_a9/
LA  - en
ID  - SM_1972_16_1_a9
ER  - 
%0 Journal Article
%A Yu. I. Makovoz
%T On a method for estimation from below of diameters of sets in Banach spaces
%J Sbornik. Mathematics
%D 1972
%P 139-146
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_16_1_a9/
%G en
%F SM_1972_16_1_a9
Yu. I. Makovoz. On a method for estimation from below of diameters of sets in Banach spaces. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 139-146. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a9/

[1] M. G. Krein, M. A. Krasnoselskii, D. P. Milman, “O defektnykh chislakh operatorov v banakhovom prostranstve i o nekotorykh geometricheskikh voprosakh”, Sb. trudov in-ta matem. AN USSR, 11 (1948), 97–112

[2] V. M. Tikhomirov, “Poperechniki mnozhestv v funktsionalnykh prostranstvakh i teoriya nailuchshikh priblizhenii”, Uspekhi matem. nauk, XV:3(93) (1960), 81–120

[3] V. M. Tikhomirov, “Odno zamechanie ob $n$-mernykh poperechnikakh mnozhestv v banakhovykh prostranstvakh”, Uspekhi matem. nauk, XX:1(121) (1965), 227–230

[4] K. Borsuk, “Drei Satze uber die $n$-dimensionale euklidische Sphare”, Fund. Math., 20 (1933), 177–191

[5] S. B. Babadzhanov, V. M. Tikhomirov, “O poperechnikakh odnogo funktsionalnogo klassa v prostranstve $L_p$, $p\geqslant1$”, Izv. AN Uzb. SSR, seriya fiz.-matem., 2 (1967), 24–30 | Zbl

[6] Yu. I. Makovoz, Teoremy o nailuchshem priblizhenii i poperechnikakh mnozhestv v banakhovykh prostranstvakh, Kand. dissertatsiya, Minsk, 1969

[7] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Dokt. dissertatsiya, Moskva, 1970

[8] E. Schmidt, “Uber die Ungleichung, welche die Integrale iiber eine Potenz einer Funktion und uber andere Potenz ihrer Ableitung verbindet”, Math. Ann., 117 (1940), 301–326 | DOI | MR

[9] L. V. Taikov, “O priblizhenii periodicheskikh funktsii v srednem”, DAN SSSR, 163:2 (1965), 301–302 | MR | Zbl