On a method for calculating and estimating the global homological dimension of Banach algebras
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 125-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the global dimension of a certain class of “near to commutative” $C^*$-algebras and group algebras is not less than two, and there are discussed conditions under which exact equality holds. Bibliography: 11 titles.
@article{SM_1972_16_1_a8,
     author = {A. Ya. Helemskii},
     title = {On a~method for calculating and estimating the global homological dimension of {Banach} algebras},
     journal = {Sbornik. Mathematics},
     pages = {125--138},
     year = {1972},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a8/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - On a method for calculating and estimating the global homological dimension of Banach algebras
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 125
EP  - 138
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_1_a8/
LA  - en
ID  - SM_1972_16_1_a8
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T On a method for calculating and estimating the global homological dimension of Banach algebras
%J Sbornik. Mathematics
%D 1972
%P 125-138
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_16_1_a8/
%G en
%F SM_1972_16_1_a8
A. Ya. Helemskii. On a method for calculating and estimating the global homological dimension of Banach algebras. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 125-138. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a8/

[1] M. A. Rieffel, “Induced Banach representations of Banach algebras and locally compact groups”, J. Funct. Anal., 1:4 (1967), 443–491 | DOI | MR | Zbl

[2] A. Grothendieck, “Produits tensoriels topologiques et espaces nucleaires”, Mem. Amer. Math. Soc., 1955, no. 16, 3–191 | MR

[3] A Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81(123) (1970), 430–444

[4] A. Ya. Khelemskii, “Opisanie otnositelno proektivnykh idealov v algebrakh $C(\Omega)$”, DAN SSSR, 195:6 (1970), 1286–1289

[5] A. Pelczynski, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in $C(S)$-spaces, Bull. Ac. Pol. Sci. ser. Math., 13, no. 1, 1965 | MR

[6] N. Th. Varopoulos, “Algebres tensorielles et applications a Tanalyse harmonique”, Summer School on Topological Algebra Theory, Bruges, 1969, 252–282

[7] J. Dauns, K. H. Hoffman, “Representation of rings by sections”, Mem. Amer. Math. Soc., 1968, no. 83 | MR

[8] H. Kamowitz, “Cohomology groups of commutative Banach algebras”, Trans. Amer. Math. Soc., 102 (1962), 352–372 | DOI | MR | Zbl

[9] A. Guichardet, “Sur l'homologie et la cohomologie des algebres de Banach”, C. R. Acad. Sci. Paris, 262 (1966), 38–41 | MR | Zbl

[10] B. E. Johnson, “The Wedderburn decomposition of Banach algebras with finite dimensional radical”, Amer. J. Math., 90 (1968), 866–876 | DOI | MR | Zbl

[11] S. Kwapien, A. Pelczynski, “The main triangle projection in matrix spaces and its applications”, Siudia Math., 34:1 (1970), 63–68 | MR