Some properties of subalgebras in varieties of linear $\Omega$-albebras
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 69-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies connections between the Nielsen and Schreier properties in varieties of linear $\Omega$-algebras, and also between systems $S$ of identical relations such that the theorem about subalgebras lying in the variety $\mathfrak M_S$ is valid, or such that the theorem about finitely generated subalgebras analogous to that of Zhukov is valid.
Bibliography: 17 titles.
@article{SM_1972_16_1_a5,
author = {M. S. Burgin and V. A. Artamonov},
title = {Some properties of subalgebras in varieties of linear $\Omega$-albebras},
journal = {Sbornik. Mathematics},
pages = {69--85},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a5/}
}
M. S. Burgin; V. A. Artamonov. Some properties of subalgebras in varieties of linear $\Omega$-albebras. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 69-85. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a5/