On the asymptotics of Green's functions for certain wave problems. II. Nonstationary case
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 45-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Second part of the paper. The smoothness and the behavior at infinity in time of the Green's function of the wave equation for the exterior of a convex region is studied in this part. Figures: 4. Bibliography: 20 titles.
@article{SM_1972_16_1_a3,
     author = {V. M. Babich},
     title = {On the asymptotics of {Green's} functions for certain wave problems. {II.~Nonstationary} case},
     journal = {Sbornik. Mathematics},
     pages = {45--59},
     year = {1972},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a3/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - On the asymptotics of Green's functions for certain wave problems. II. Nonstationary case
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 45
EP  - 59
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_1_a3/
LA  - en
ID  - SM_1972_16_1_a3
ER  - 
%0 Journal Article
%A V. M. Babich
%T On the asymptotics of Green's functions for certain wave problems. II. Nonstationary case
%J Sbornik. Mathematics
%D 1972
%P 45-59
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_16_1_a3/
%G en
%F SM_1972_16_1_a3
V. M. Babich. On the asymptotics of Green's functions for certain wave problems. II. Nonstationary case. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a3/

[1] V. M. Babich, “Ob asimptotike funktsii. Grina nekotorykh volnovykh zadach. I”, Matem. sb., 86(128) (1971), 518–537 | Zbl

[2] A. Ya. Povzner, I. V. Sukharevskii, “O razryvakh funktsii Grina smeshannoi zadachi dlya volnovogo uravneniya i o nekotorykh difraktsionnykh zadachakh”, DAN SSSR, 122:6 (1958) | MR | Zbl

[3] A. Ya. Povzner, I. V Sukharevskii, “O razryvakh funktsii Grina smeshannoi zadachi dlya volnogo uravneniya”, Matem. sb., 51(93) (1960), 3–26 | MR | Zbl

[4] C. S. Morawetz, D. Ludwig, “The generalized Huighens principle for reflecting bodies”, Comm. Pure and Appl. Math., 22:2 (1969), 189–205 | DOI | MR | Zbl

[5] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107) (1964), 576–630 | Zbl

[6] F. Ursell, “On the short-wave asymptotic theory of the wave equation $(\nabla^2+k^2)\varphi=0$”, Proc. Cambridge Phil. Soc., 3:1 (1957), 115–133 | DOI | MR

[7] Grimshaw, “High-frequency scattering by finite convex regions”, Comm. Pure and Appl. Math., 19:2 (1966), 167–198 | DOI | MR | Zbl

[8] V. M. Babich, I. V. Olimpiev, Tretii simpozium po difraktsii voln, Nauka, Moskva, 1964

[9] I. V. Olimpiev, “Otsenki polya v oblasti teni pri difraktsii tsilindricheskoi volny na ogranichennom vypuklom tsilindre”, DAN SSSR, 156:5 (1964), 1068–1071 | MR | Zbl

[10] V. M. Babich, “Otsenka funktsii Grina dlya uravneniya Gelmgoltsa v zone teni”, Vestnik LGU, 7 (1965), 5–15 | Zbl

[11] D. Ludwig, “Uniform asymptotic expansion of the field scattered by a convex object of fTigh frequencies”, Comm. Pure and Appl. Math., 20:1 (1967), 103–138 | DOI | MR | Zbl

[12] C. S. Morawetz, D. Ludwig, “An inequality for reduced wave operator and the justification of geometrical optics”, Comm. Pure and Appl. Math., 21:2 (1968), 111–118 | DOI | MR

[13] V. M. Babich, “Ob analiticheskom prodolzhenii rezolventy vneshnikh zadach dlya operatora Laplasa na vtoroi list”, Teoriya funktsii, funkts. analiz i ikh prilozheniya, 3, LGU, Leningrad, 1966, 151–157

[14] F. I. Fridlender, Zvukovye impulsy, IL, Moskva, 1962

[15] H. Reichardt, “Ausstrahlungsbedingungen fur die Wellengleichung”, Abhandl Math. Seminar Univ., 24, Hamburg, 1960, 41–53 | MR | Zbl

[16] R. C. Mac Camy, “Low frequency acoustic oscillations”, Quart. Appl. Math., 23:3 (1965), 247–255 | MR | Zbl

[17] O. A. Ladyzhenskaya, “O printsipe predelnoi amplitudy”, Uspekhi matem. nauk, XII:3(75) (1957), 161–164

[18] N. D. Kazarinoff, R. K. Rill, “Scalar diffraction theory and turning point problems”, ARMA, 5:2 (1960), 177–186 | DOI | MR | Zbl

[19] C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure and Appl. Math., 15:3 (1962), 249–361 | DOI | MR

[20] E. Zachmanoglou, “The decay of solutions of the initial-boundary value problem for the wave equation in unbounded regions”, ARMA, 14:4 (1963), 312–325 | MR | Zbl