The behavior of solutions in the neighborhood of a boundary point and at infinity for quasilinear elliptic equations with a weak nonlinearity
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 36-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we investigate the behavior of solutions of quasilinear equations of elliptic type in unbounded regions (halfplane, cone) and in the neighborhood of boundary points. The results are obtained by the $S$-capacity method. Bibliography: 7 titles.
@article{SM_1972_16_1_a2,
     author = {A. A. Kosmodem'yanskii (Jr.)},
     title = {The behavior of solutions in the neighborhood of a~boundary point and at infinity for quasilinear elliptic equations with a~weak nonlinearity},
     journal = {Sbornik. Mathematics},
     pages = {36--44},
     year = {1972},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a2/}
}
TY  - JOUR
AU  - A. A. Kosmodem'yanskii (Jr.)
TI  - The behavior of solutions in the neighborhood of a boundary point and at infinity for quasilinear elliptic equations with a weak nonlinearity
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 36
EP  - 44
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_1_a2/
LA  - en
ID  - SM_1972_16_1_a2
ER  - 
%0 Journal Article
%A A. A. Kosmodem'yanskii (Jr.)
%T The behavior of solutions in the neighborhood of a boundary point and at infinity for quasilinear elliptic equations with a weak nonlinearity
%J Sbornik. Mathematics
%D 1972
%P 36-44
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_16_1_a2/
%G en
%F SM_1972_16_1_a2
A. A. Kosmodem'yanskii (Jr.). The behavior of solutions in the neighborhood of a boundary point and at infinity for quasilinear elliptic equations with a weak nonlinearity. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 36-44. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a2/

[1] E. M. Landis, “$s$-emkost i ee prilozheniya k issledovaniyu reshenii ellipticheskogo uravneniya $2$-go poryadka s razryvnymi koeffitsientami”, Matem. sb., 76(118) (1968), 186–213 | MR | Zbl

[2] J. Serrin, “Local behavior of quasilinear equations”, Acta Math., 111:3–4 (1964), 247–302 | DOI | MR | Zbl

[3] I. N. Krol, V. G. Mazya, “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii odnogo kvazilineinogo uravneniya”, Zapiski nauchnykh seminarov LOMI, 14 (1969), 89–91 | MR | Zbl

[4] V. G. Mazya, “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestnik LGU, 13 (1970), 42–55

[5] E. M. Landis, “O nekotorykh svoistvakh kvazilineinykh ellipticheskikh uravnenii”, DAN SSSR, 197:6 (1971), 1268–1271 | MR | Zbl

[6] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phyl. Trans. R. S. of London, 264:1153 (1969), 413–496 | DOI | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, Moskva, 1964 | MR