On groups of unit elements of certain quadratic forms
Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 17-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that, for the groups of unit elements of certain integral quadratic forms of signature $(n,1)$, there exist subgroups of finite index, generated by reflections; and the generators and relations of these subgroups are found. Bibliography: 4 titles.
@article{SM_1972_16_1_a1,
     author = {\`E. B. Vinberg},
     title = {On groups of unit elements of certain quadratic forms},
     journal = {Sbornik. Mathematics},
     pages = {17--35},
     year = {1972},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1972_16_1_a1/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - On groups of unit elements of certain quadratic forms
JO  - Sbornik. Mathematics
PY  - 1972
SP  - 17
EP  - 35
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1972_16_1_a1/
LA  - en
ID  - SM_1972_16_1_a1
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T On groups of unit elements of certain quadratic forms
%J Sbornik. Mathematics
%D 1972
%P 17-35
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1972_16_1_a1/
%G en
%F SM_1972_16_1_a1
È. B. Vinberg. On groups of unit elements of certain quadratic forms. Sbornik. Mathematics, Tome 16 (1972) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/SM_1972_16_1_a1/

[1] H. S. M. Coxeter, “Discrete groups generated by reflections”, Ann. Math., 35:3 (1934), 588–621 | DOI | MR | Zbl

[2] F. Lanner, On complexes with transitive groups of automorphisms, Lunds Univ. Math. Sem., 11, 1950 | MR | Zbl

[3] E. B. Vinberg, “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72(114) (1967), 471–488 | MR | Zbl

[4] E. M. Andreev, “O peresechenii ploskostei granei mnogogrannikov s ostrymi uglami”, Matem. zametki, 8:4 (1970) | MR | Zbl